Variables
From WikiROMS
Variables
This wikipage includes all ROMS global variables in alphabetic order. A single long page is built to facilitate printing. Each variable has a unique anchor tag to facilitate linking from any wikipage.
Contents | |||||||||||||||||||||||||
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
A
B
C
D
- Time stamp assigned to model initialization (days). Usually a Calendar linear coordinate, like modified Julian Day.
- option =
- routine = mod_scalars.F
- keyword = DSTART
- input = ocean.in
- dt
- Time-Step size in seconds. If 3D configuration, dt is the size of the baroclinic time-step. If only 2D configuration, dt is the size of the barotropic time-step.
- dimension = dt(Ngrids)
- option =
- routine = mod_scalars.F
- keyword = DT
- input = ocean.in
- Dwave
- wind-induced wave direction. Direction the waves are coming from; measured clockwise from geographic North. (nautical convention).
- dimension = Dwave(LBi:UBi,LBj:UBj)
- pointer = FORCES(ng)%Dwave
- units = degrees
- grid = rho-points
- option =
- routine = ssw_bbl.h, mb_bbl.h, sg_bbl.h, ana_wwave.h, radiation_stress.F
E
- ERstr
- Starting ensemble run (perturbation or iteration) number.
- option =
- routine = mod_scalars.F
- keyword = ERstr
- input = ocean.in
- ERend
- Ending ensemble run (perturbation or iteration) number.
- option =
- routine = mod_scalars.F
- keyword = ERend
- input = ocean.in
F
- FLTname
- Output floats data file name.
- dimension = FLTname(Ngrids)
- option =
- routine = mod_iounits.F
- keyword = FLTNAME
- input = ocean.in
- fposnam
- Input initial floats positions file name (floats.in).
- option = FLOATS
- routine = mod_iounits.F
- keyword = FPOSNAM
- input = ocean.in
- frrec
- Flag to indicate re-start from a previous solution. For new solutions (not a model restart) use frrec=0. In a re-start solution, frrec is the time index in the floats NetCDF file assigned for initialization. If frrec is negative (say frrec=-1), the floats will re-start from the most recent time record. That is, the initialization record is assigned internally.
- dimension = frrec(Ngrids)
- option = FLOATS
- routine = mod_scalars.F
- keyword = FRREC
- input = floats.in
G
H
- Hout
- Set of switches that determine what fields are written to the history output file (HISname).
- dimension = Hout(NV,Ngrids)
- option =
- routine = mod_ncparam.F
- keyword = Hout
- input = ocean.in
- HISname
- Output history data file name.
- dimension = HISname(Ngrids)
- option =
- routine = mod_iounits.F
- keyword = HISNAME
- input = ocean.in
- Hz
- Vertical level thicknesses, .
- dimension = Hz(LBi:UBi,LBj:UBj,N(ng))
- pointer = GRID(ng)%Hz
- tangent = tl_Hz
- adjoint = ad_Hz
- units = meter
- grid = ρ-points
- option = SOLVE3D
- routine = set_depths.F
I
- Iend
- Non-overlapping upper bound tile index in the i-direction. Its value depends on the tile rank (sub-domain partition).
- routine = tile.h, get_tile.F
- Istr
- Non-overlapping lower bound tile index in the i-direction. Its value depends on the tile rank (sub-domain partition).
- routine = tile.h, get_tile.F
- idbio
- Identification indexes for biological tracer variables, t(:,:,:,:,idbio(:)).
- dimension = idbio(NBT)
- option = BIOLOGY
- routine = mod_scalars.F
- idsed
- Identification indexes for biological tracer variables, t(:,:,:,:,idsed(:)).
- dimension = idsed(NST)
- option = SEDIMENT
- routine = mod_scalars.F
- inert
- Identification indexes for inert tracer variables, t(:,:,:,:,inert(:)).
- dimension = inert(NPT)
- option = T_PASSIVE
- routine = mod_scalars.F
- isalt
- Tracer identification index for salinity, t(:,:,:,:,isalt).
- routine = mod_scalars.F
- itemp
- Tracer identification index for potential temperature, t(:,:,:,:,itemp).
- routine = mod_scalars.F
J
- Jend
- Non-overlapping upper bound tile index in the j-direction. Its value depends on the tile rank (sub-domain partition).
- routine = tile.h, get_tile.F
- Jstr
- Non-overlapping lower bound tile index in the j-direction. Its value depends on the tile rank (sub-domain partition).
- routine = tile.h, get_tile.F
K
L
- LBi
- Array lower bound dimension in the i-direction. In serial and shared-memory applications its value is LBi=-2 for East-West periodic grids or LBi=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, LBi=Istr-NghostPoints.
- option = LOWER_BOUND_I
- routine = get_bounds.F, get_tile.F
- LBj
- Array lower bound dimension in the j-direction. In serial and shared-memory applications its value is LBj=-2 for North-South periodic grids or LBj=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, LBj=Jstr-NghostPoints.
- option = LOWER_BOUND_J
- routine = get_bounds.F, get_tile.F
- Lfloats
- Switch to control the computation of floats trajectories within nested and/or multiple connected grids. Ngrids values are expected. By default this switch is set to TRUE in mod_scalars.F for all grids when the CPP option FLOATS is activated. The user can control which grids to process by turning on/off this switch.
- dimension = Lfloats(Ngrids)
- option = FLOATS
- routine = mod_scalars.F
- keyword = Lfloats
- input = floats.in
- Lm
- Number of interior grid points in the ξ-direction. Ngrids values are expected.
- dimension = Lm(Ngrids)
- routine = mod_param.F
- keyword = Lm
- input = ocean.in
- Lsediment
- Switch is used to control sediment model computation within nested and/or multiple connected grids. Ngrids values are expected. By default this switch is set to TRUE in mod_scalars.F for all grids when the CPP option SEDIMENT is activated. The user can control which grids to process by turning on/off this switch.
- dimension = Lsediment(Ngrids)
- option = SEDIMENT
- routine = mod_scalars.F
- keyword = Lsediment
- input = sediment.in
- Lstations
- Switch to control the writing of station data within nested and/or multiple connected grids. Ngrids values are expected. By default this switch is set to TRUE in mod_scalars.F for all grids when the CPP option STATIONS is activated. The user can control which grids to process by turning on/off this switch.
- dimension = Lstations(Ngrids)
- option = STATIONS
- routine = mod_scalars.F
- keyword = Lstations
- input = stations.in
M
- Mm
- Number of interior grid points in the η-direction. Ngrids values are expected.
- dimension = Mm(Ngrids)
- routine = mod_param.F
- keyword = Mm
- input = ocean.in
- MyAppCPP
- C-preprocessing flag to define the specific configuration. In versions up to 2.3 this flag was one of the predefined model applications that headed the cppdefs.h file. You must make the value of MyAppCPP consistent with variable ROMS_APPLICATION in the build script or makefile if you are not using build.sh or build.bash. ROMS converts the ROMS_APPLICATION variable to lowercase to determine the name of the file to include.
- keyword = MyAppCPP
- input = ocean.in
N
- N
- Number of vertical levels for each nested grid.
- dimension = N(Ngrids)
- routine = mod_param.F
- keyword = N
- input = ocean.in
- NAT
- Number of active tracer-type variables. Usually, it has a value of two for potential temperature and salinty.
- option = SOLVE3D
- routine = mod_param.F
- keyword = NAT
- input = ocean.in
- Nbed
- Number of sediment bed layers.
- routine = mod_param.F
- keyword = Nbed
- input = ocean.in
- NBT
- Number of biological tracer-type variables.
- option = BIOLOGY
- routine = mod_param.F
- keyword = NBT
- input = biology.in
- NCS
- Number of cohesive (mud) sediment tracer-type variables.
- option = SEDIMENT
- routine = mod_param.F
- keyword = NCS
- input = ocean.in
- ndtfast
- Number of barotropic time-steps between each baroclinic time step. If only 2D configuration, NDTFAST should be unity since there is no need to split time-stepping.
- option =
- routine = mod_scalars.F
- keyword = NDTFAST
- input = ocean.in
- Nfloats
- Number of floats to release in each nested grid. Value(s) are used to dynamically allocate the arrays in FLOATS array structure. Ngrids values are expected.
- dimension = Nfloats(Ngrids)
- option = FLOATS
- routine = mod_floats.F init_param.F
- keyword = NFLOATS
- input = floats.in
- NghostPoints
- Number of ghost points in the halo region used in distributed-memory configurations.
- option = GHOST_POINTS
- routine = mod_param.F
- Ngrids
- Number of nested and/or multiple connected grids to solve.
- routine = mod_param.F
- Ninner
- Maximum number of 4DVAR inner loop iterations.
- option =
- routine = mod_scalars.F
- keyword = Ninner
- input = ocean.in
- Nintervals
- Number of time interval divisions for stochastic optimals computations. It must be a multiple of NTIMES.
- option =
- routine = mod_scalars.F
- keyword = Nintervals
- input = ocean.in
- NNS
- Number of non-cohesive (sand) sediment tracer-type variables.
- option = SEDIMENT
- routine = mod_param.F
- keyword = NNS
- input = ocean.in
- Nouter
- Maximum number of 4DVAR outer loop iterations.
- option =
- routine = mod_scalars.F
- keyword = Nouter
- input = ocean.in
- NPT
- Number of inert tracer-type variables. Currently, an inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc.
- option = T_PASSIVE
- routine = mod_param.F
- keyword = NPT
- input = ocean.in
- NST
- Number of sediment tracer-type variables, NST=NCS+NNS.
- option = SEDIMENT
- routine = mod_param.F
- Nstation
- Number of stations to process in each nested grid. Value(s) are used to dynamically allocate the station arrays. Ngrids values are expected.
- dimension = Nstation(Ngrids)
- option = STATIONS
- routine = mod_param.F
- keyword = NSTATION
- input = stations.in
- NT
- Total number of tracer-type variables for each nested grid. Currently, NT=NAT+NPT+NST+NBT.
- dimension = NT(Ngrids)
- option = SOLVE3D
- routine = mod_param.F
- input = ocean.in (derived from NAT+NPT+NST+NBT)
- NtileI
- Number of domain partitions in the I-direction (ξ-coordinate). It must be equal to or greater than one.
- dimension = NtileI(Ngrids)
- option =
- routine = mod_param.F
- keyword = NtileI
- input = ocean.in
- NtileJ
- Number of domain partitions in the J-direction (η-coordinate). It must be equal to or greater than one.
- dimension = NtileJ(Ngrids)
- option =
- routine = mod_param.F
- keyword = NtileJ
- input = ocean.in
- ntimes
- Total number time-steps in current run. If 3D configuration, ntimes is the total of baroclinic time-steps. If only 2D configuration, ntimes is the total of barotropic time-steps.
- option =
- routine = mod_scalars.F
- keyword = NTIMES
- input = ocean.in
- NV
- Maximum number of variables in information arrays. Currently, 500.
- option =
- routine = mod_ncparam.F
- input = ocean.in
O
P
Q
R
- rho
- In situ density anomaly computed as a function of potential temperature, salinity, and depth.
- .
- dimension = rho(LBi:UBi,LBj:UBj,N(ng))
- pointer = OCEAN(ng)%rho
- tangent = tl_rho
- adjoint = ad_rho
- units = kilogram meter-3
- grid = ρ-points
- option = SOLVE3D, NONLIN_EOS
- routine = rho_eos.F
- It can computed using a linear or nonlinear equation of state. The nonlinear equation of state is based on Jackett and McDougall (1992) polynomial expressions.
S
- Sout
- Set of switches that determine what fields are written to the stations output file (STAname).
- dimension = Sout(NV,Ngrids)
- option = STATIONS
- routine = mod_ncparam.F
- keyword = Sout
- input = stations.in
- sposnam
- Input initial stations positions (stations.in) file name.
- option = STATIONS
- routine = mod_iounits.F
- keyword = SPOSNAM
- input = ocean.in
- STAname
- Output station data file name.
- dimension = STAname(Ngrids)
- option =
- routine = mod_iounits.F
- keyword = STANAME
- input = ocean.in
T
- t
- Tracer-type variables, .
- dimension = t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng))
- pointer = OCEAN(ng)%t
- tangent = tl_t
- adjoint = ad_t
- grid = ρ-points
- option = SOLVE3D
- routine = step3d_t.F
- This array contains all the tracer fields. They are classified as active (potential temperature, salinity), inert (dyes, pollutants, oil spills, etc), passive (sediment, biology). There is a index identifier for each tracer field (see table below). Notice that salinity does not have physical units. Usually PSU is used to indicate that the practical salinity scale was used to determine conductivity.
Index | Field | Units | CPP |
---|---|---|---|
itemp | Potential temperature | Celsius | SOLVE3D |
isalt | Salinity | None | SALINITY |
inert(1:NPT) | NPT inert tracers | kilogram meter-3 | T_PASSIVE |
idsed(1:NST) | NST sediment tracers | kilogram meter-3 | SEDIMENT |
idbio(1:NBT) | NBT biology tracers | millimole meter-3 | BIOLOGY |
- tide_start
- Reference time origin for tidal forcing (days). This is the time used when processing input tidal model data. It is needed in routine set_tides.F to compute the correct phase lag with respect ROMS/TOMS initialization time.
- option =
- routine = mod_scalars.F
- keyword = TIDE_START
- input = ocean.in
- time_ref
- Reference time (yyyymmdd.f) used to compute relative time: elapsed time interval since reference-time.
- option =
- routine = mod_scalars.F
- keyword = TIME_REF
- input = ocean.in
- title
- Title of model run.
- keyword = TITLE
- input = ocean.in
U
- UBi
- Array upper bound dimension in the i-direction. In serial and shared-memory applications its value is govern by the value of UPPER_BOUND_I. In distributed-memory its value is a function of the tile partition, UBi=Iend+NghostPoints.
- option = UPPER_BOUND_I
- routine = get_bounds.F, get_tile.F
- UBj
- Array upper bound dimension in the j-direction. In serial and shared-memory applications its value is govern by the value of UPPER_BOUND_J. In distributed-memory its value is a function of the tile partition, UBj=Jend+NghostPoints.
- option = UPPER_BOUND_J
- routine = get_bounds.F, get_tile.F
- u
- Total momentum component in the ξ-direction, .
- dimension = u(LBi:UBi,LBj:UBj,N(ng),2)
- pointer = OCEAN(ng)%u
- tangent = tl_u
- adjoint = ad_u
- units = meter second-1
- grid = u-points
- option = SOLVE3D
- routine = step3d_uv.F
- ubar
- Vertically-integrated momentum component in the ξ-direction, .
- dimension = ubar(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%ubar
- tangent = tl_ubar
- adjoint = ad_ubar
- units = meter second-1
- grid = u-points
- routine = step2d.F
V
- v
- 3D momentum component in the η-direction, .
- dimension = v(LBi:UBi,LBj:UBj,N(ng),2)
- pointer = OCEAN(ng)%v
- tangent = tl_u
- adjoint = ad_u
- units = meter second-1
- grid = v-points
- option = SOLVE3D
- routine = step3d_uv.F
- varname
- Input variable information file name. This file needs to be processed first so all information arrays can be initialized properly. The default file is at ROMS/External/varinfo.dat.
- keyword = VARNAME
- input = ocean.in
- vbar
- Vertically-integrated momentum component in the η-direction, .
- dimension = vbar(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%vbar
- tangent = tl_vbar
- adjoint = ad_vbar
- units = meter second-1
- grid = v-points
- routine = step2d.F
W
- W
- Terrain-following, vertical velocity component, .
- dimension = W(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = OCEAN(ng)%W
- tangent = tl_W
- adjoint = ad_W
- units = meter3 second-1
- sign = positive downwards (downwelling), negative upwards (upwelling)
- grid = w-points
- option = SOLVE3D
- routine = omega.F
- Jwtype
- Jerlov water type: an integer value from 1 to 5.
- option =
- routine = mod_mixing.F
- keyword = WTYPE
- input = ocean.in
- wvel
- True vertical velocity component, . It is computed only for output purposes.
- dimension = wvel(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = OCEAN(ng)%wvel
- units = meter second-1
- sign = positive downwards (downwelling), negative upwards (upwelling
- grid = w-points
- option = SOLVE3D
- routine = wvelocity.F
X
Y
Z
- zeta
- Free-surface, .
- dimension = zeta(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%zeta
- tangent = tl_zeta
- adjoint = ad_zeta
- units = meter
- grid = ρ-points
- routine = step2d.F