roms.in: Difference between revisions
Line 39: | Line 39: | ||
* Output tangent linear and adjoint models parameters.<div class="box"> [[Variables#LcycleTLM|LcycleTLM]] == F ! Switch to recycle TLM time records<br /> [[Variables#nTLM|NTLM]] == 72 ! Number of time-steps between TLM records<br /> [[Variables#ndefTLM|NDEFTLM]] == 0 ! Number of time-steps between creation of new TLM file<br> [[Variables#LcycleADJ|LcycleADJ]] == F ! Switch to recycle ADM time records<br> [[Variables#nADJ|NADJ]] == 72 ! Number of time-steps between ADM records<br> [[Variables#ndefADJ|NDEFADJ]] == 0 ! Number of time-steps between creation of new ADM file<br> [[Variables#nSFF|NSFF]] == 72 ! Number of time-steps between 4DVAR adjustment of<br> ! surface forcing fluxes<br> [[Variables#nOBC|NOBC]] == 72 ! Number of time-steps between 4DVAR adjustment of<br> ! open boundary fields</div> | * Output tangent linear and adjoint models parameters.<div class="box"> [[Variables#LcycleTLM|LcycleTLM]] == F ! Switch to recycle TLM time records<br /> [[Variables#nTLM|NTLM]] == 72 ! Number of time-steps between TLM records<br /> [[Variables#ndefTLM|NDEFTLM]] == 0 ! Number of time-steps between creation of new TLM file<br> [[Variables#LcycleADJ|LcycleADJ]] == F ! Switch to recycle ADM time records<br> [[Variables#nADJ|NADJ]] == 72 ! Number of time-steps between ADM records<br> [[Variables#ndefADJ|NDEFADJ]] == 0 ! Number of time-steps between creation of new ADM file<br> [[Variables#nSFF|NSFF]] == 72 ! Number of time-steps between 4DVAR adjustment of<br> ! surface forcing fluxes<br> [[Variables#nOBC|NOBC]] == 72 ! Number of time-steps between 4DVAR adjustment of<br> ! open boundary fields</div> | ||
* Output check pointing GST restart parameters.<div class="box"> [[Variables#LmultiGST|LmultiGST]] = F ! one eigenvector per file<br /> [[Variables#LrstGST|LrstGST]] = F ! GST restart switch<br /> [[Variables#MaxIterGST|MaxIterGST]] = 500 ! maximum number of iterations<br /> [[Variables#nGST|NGST]] = 10 ! check pointing interval</div> | * Output check pointing GST restart parameters.<div class="box"> [[Variables#LmultiGST|LmultiGST]] = F ! one eigenvector per history file<br /> [[Variables#LrstGST|LrstGST]] = F ! GST restart switch<br /> [[Variables#MaxIterGST|MaxIterGST]] = 500 ! maximum number of iterations<br /> [[Variables#nGST|NGST]] = 10 ! check pointing interval</div> | ||
== Physical and Numerical Parameters == | == Physical and Numerical Parameters == |
Revision as of 18:37, 1 April 2011
File ocean.in is the ROMS standard input file to any model run. This file sets the application spatial dimensions and many of the parameters that are not specified at compile time, including parallel tile decomposition, time-stepping, physical coefficients and constants, vertical coordinate set-up, logical switches and flags to control the frequency of output, the names of input and output NetCDF files, and additional input scripts names for data assimilation, stations, floats trajectories, ecosystem models, and sediment model.
This standard input ASCII file is organized in several sections as shown below, with links to more detailed explanation where required.
Notice: A detailed information about ROMS input script file syntax can be found here.
Notice: A default ocean.in input script is provided in the User/External subdirectory. Also there are several standard input scripts in the ROMS/External subdirectory which are used in the distributed test cases. They are usually named ocean_app.in where app is the lowercase of the test case cpp option.
Configuration Parameters
- Application title. This string will be saved in the output NetCDF files. TITLE = Wind-Driven Upwelling/Downwelling over a Periodic Channel
- C-preprocessing Flag to define the specific configuration.MyAppCPP = UPWELLINGThough this is set by ROMS_APPLICATION in the makefile or build Script, ROMS is also compiled with -D$(ROMS_APPLICATION), which allows the use of#ifdef UPWELLINGfor instance. The net result of both-D$(ROMS_APPLICATION)=UPWELLING -DUPWELLINGis that ROMS_APPLICATION becomes 1 in the source code. ROMS therefore needs to be told the application name here as well in order to report it to the output file.
- Input variable information file name. This file needs to be processed first so all information arrays can be initialized properly. Notice that we need an absolute or relative path for input metadata file varinfo.dat. There are many posts in the ROMS Forum of new users that fail to specify the correct location of this file. Expert users usually have the own modified copy of this file for a particular application.VARNAME = ROMS/External/varinfo.dat
- NOTE: Starting with revision 460 file names can be up to 256 characters long. Previously only 80 characters were allowed.
- Grid dimension parameters. These are used to dynamically allocate all model state variables upon execution.Lm == 41 ! Number of I-direction INTERIOR RHO-points
Mm == 80 ! Number of J-direction INTERIOR RHO-points
N == 16 ! Number of vertical levels
Nbed = 0 ! Number of sediment bed layers
NAT = 2 ! Number of active tracers (usually, 2)
NPT = 0 ! Number of inactive passive tracers
NCS = 0 ! Number of cohesive (mud) sediment tracers
NNS = 0 ! Number of non-cohesive (sand) sediment tracers
- Domain decomposition parameters for serial, distributed-memory or shared-memory configurations used to determine tile horizontal range indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids] values are expected.
Time-Stepping and Iterations Parameters
- Time-stepping parameters.
- Model iteration loops parameters.ERstr = 1 ! Starting perturbation or iteration
ERend = 1 ! Ending perturbation or iteration
Nouter = 1 ! Maximum number of 4DVar outer loop iterations
Ninner = 1 ! Maximum number of 4DVar inner loop iterations
Nintervals = 1 ! Number of stochastic optimals interval divisions
- Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the Lanczos/Arnoldi problem in the Generalized Stability Theory (GST) analysis. NCV must be greater than NEV. Notice: At present, there is no a-priori analysis to guide the selection of NCV relative to NEV. The only formal requirement is that NCV > NEV. However in optimal perturbations, it is recommended to have NCV ≥ 2*NEV. In Finite Time Eigenmodes (FTE) and Adjoint Finite Time Eigenmodes (AFTE) the requirement is to have NCV ≥ 2*NEV+1. The efficiency of calculations depends critically on the combination of NEV and NCV. If NEV is large (greater than 10 say), you can use NCV=2*NEV+1 but for NEV small (less than 6) it will be inefficient to use NCV=2*NEV+1. In complicated applications, you can start with NEV=2 and NCV=10. Otherwise, it will iterate for very long time.
Output Frequency Parameters
- Flags controlling the frequency of output.NRREC = 0 ! Model restart flag
LcycleRST == T ! Switch to recycle restart time records
NRST == 288 ! Number of time-steps between restart records
NSTA == 1 ! Number of time-steps between stations records
NFLT == 1 ! Number of time-steps between floats records
NINFO == 1 ! Number of time-steps between information diagnostics
- Output history, average, diagnostic files parameters.LDEFOUT == T ! File creation/append switch
NHIS == 72 ! Number of time-steps between history records
NDEFHIS == 0 ! Number of time-steps between creation of new history file
NTSAVG == 1 ! Starting averages time-step
NAVG == 72 ! Number of time-steps between averages records
NDEFAVG == 0 ! Number of time-steps between creation of new averages file
NTSDIA == 1 ! Starting diagnostics time-step
NDIA == 72 ! Number of time-steps between diagnostics records
NDEFDIA == 0 ! Number of time-steps between creation of new diagnostics file
- Output tangent linear and adjoint models parameters.LcycleTLM == F ! Switch to recycle TLM time records
NTLM == 72 ! Number of time-steps between TLM records
NDEFTLM == 0 ! Number of time-steps between creation of new TLM file
LcycleADJ == F ! Switch to recycle ADM time records
NADJ == 72 ! Number of time-steps between ADM records
NDEFADJ == 0 ! Number of time-steps between creation of new ADM file
NSFF == 72 ! Number of time-steps between 4DVAR adjustment of
! surface forcing fluxes
NOBC == 72 ! Number of time-steps between 4DVAR adjustment of
! open boundary fields
- Output check pointing GST restart parameters.LmultiGST = F ! one eigenvector per history file
LrstGST = F ! GST restart switch
MaxIterGST = 500 ! maximum number of iterations
NGST = 10 ! check pointing interval
Physical and Numerical Parameters
- Relative accuracy of the Ritz values computed in the GST analysis.Ritz_tol = 1.0d-15
- Harmonic/biharmonic horizontal diffusion of all active and passive (dye) tracers for the nonlinear model and adjoint-based algorithms: [1:NAT+NPT,Ngrids] values are expected. Diffusion coefficients for biology and sediment tracers are set in their respective input scripts.
- Harmonic/biharmonic, horizontal viscosity coefficient for the nonlinear model and adjoint-based algorithms: [1:Ngrids values are expected. Only used if the appropriate CPP options are defined.
- Background vertical mixing coefficients for active (NAT) and inert (NPT) tracers for the nonlinear model and basic state scale factor in adjoint-based algorithms: [1:NAT+NPT,Ngrids] values are expected.
- Background vertical mixing coefficient for momentum for the nonlinear model and basic state scale factor in the adjoint-based algorithms: [1:Ngrids] values are expected.
- Turbulent closures parameters.
- Generic length-scale turbulence closure parameters. These parameters are used when GLS_MIXING is activated.GLS_P == 3.0d0 ! K-epsilon
GLS_M == 1.5d0 ! Turbulent kinetic energy exponent
GLS_N == -1.0d0 ! Turbulent length scale exponent
GLS_Kmin == 7.6d-6 ! Minimum value of specific turbulent energy
GLS_Pmin == 1.0d-12 ! Minimum Value of dissipation
! Closure independent constraint parameters:
GLS_CMU0 == 0.5477d0 ! Stability coefficient
GLS_C1 == 1.44d0 ! Shear production coefficient
GLS_C2 == 1.92d0 ! Dissipation coefficient
GLS_C3M == -0.4d0 ! Buoyancy production coefficient (minus)
GLS_C3P == 1.0d0 ! Buoyancy production coefficient (plus)
GLS_SIGK == 1.0d0 ! Constant Schmidt number for turbulent
! kinetic energy diffusivity
GLS_SIGP == 1.30d0 ! Constant Schmidt number for turbulent
! generic statistical field, "psi"
- Constants used in surface turbulent kinetic energy flux computation.CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
ZOS_HSIG_ALPHA == 0.5d0 ! Roughness from wave amplitude
SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking
- Constants used in momentum stress computation.
- Height (m) of atmospheric measurements for Bulk fluxes parameterization.
- Minimum depth for wetting and drying.DCRIT == 0.10d0 ! m
- Jerlov water type used to set vertical depth scale for shortwave radiation absorption.WTYPE == 1
- Deepest and shallowest levels to apply surface momentum stress as a body-force.
- Mean Density and Brunt-Vaisala frequency.
- Time-stamp assigned for model initialization, reference time origin for tidal forcing, and model reference time for output NetCDF units attribute.
- Nudging/relaxation time scales, inverse scales will be computed internally, [1:Ngrids] values are expected.
- Factor between passive (outflow) and active (inflow) open boundary conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger than on outflow (recommended).OBCFAC == 0.0d0 ! nondimensional
- Linear equation of State parameters, [1:Ngrids] values are expected.
- Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip).GAMMA2 = 1.0d0
- Logical switches (TRUE/FALSE) to specify which variables to consider on tracers point Sources/Sinks (like river runoff): [1:NAT+NPT,Ngrids] values are expected.LtracerSrc = T T ! temperature, salinity, inert
Vertical Coordinates Parameters
- Set vertical, terrain-following coordinates transformation equation and stretching function (see Vertical S-coordinate for more details).
- S-coordinate surface control parameter, [1:Ngrids] values are expected. The range of optimal values depends on the vertical stretching function.THETA_S == 3.0d0 ! surface stretching parameter
- S-coordinate bottom control parameter, [1:Ngrids] values are expected. The range of optimal values depends on the vertical stretching function.THETA_B == 0.0d0 ! bottom stretching parameter
- Critical depth (hc) in meters (positive) controlling the stretching. It can be interpreted as the width of surface or bottom boundary layer in which higher vertical resolution (levels) is required during stretching.TCLINE == 25.0d0 ! critical depth (m)
Adjoint Sensitivity Parameters
- Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing. DstrS must be less or equal to DendS. If both values are zero, their values are reset internally to the full range of the adjoint integration.
- Starting and ending vertical levels of the 3D adjoint state variables whose sensitivity is required.
- Logical switches (TRUE/FALSE) to specify the adjoint state variables whose sensitivity is required.Lstate(isFsur) == F ! free-surface
Lstate(isUbar) == F ! 2D U-momentum
Lstate(isVbar) == F ! 2D V-momentum
Lstate(isUvel) == F ! 3D U-momentum
Lstate(isVvel) == F ! 3D V-momentum
- Logical switches (TRUE/FALSE) to specify the adjoint state tracer variables whose sensitivity is required, [1:NT,1:Ngrids] values are expected.Lstate(isTvar) == F F ! NT tracers
Stochastic Optimals Parameters
- Logical switches (TRUE/FALSE) to specify the state variables required by Forcing Singular Vectors or Stochastic Optimals.Fstate(isFsur) == F ! free-surface
Fstate(isUbar) == F ! 2D U-momentum
Fstate(isVbar) == F ! 2D V-momentum
Fstate(isUvel) == F ! 3D U-momentum
Fstate(isVvel) == F ! 3D V-momentum
Fstate(isTvar) == F F ! NT tracers
Fstate(isUstr) == F ! surface U-stress
Fstate(isVstr) == F ! surface V-stress
Fstate(isTsur) == F F ! NT surface tracers flux
- Stochastic optimals time decorrelation scale (days) assumed for red noise processes.SO_decay == 2.0d0 ! days
- Stochastic Optimals surface forcing standard deviation for dimensionalization.SO_sdev(isFsur) == 1.0d0 ! free-surface
SO_sdev(isUbar) == 1.0d0 ! 2D U-momentum
SO_sdev(isVbar) == 1.0d0 ! 2D V-momentum
SO_sdev(isUvel) == 1.0d0 ! 3D U-momentum
SO_sdev(isVvel) == 1.0d0 ! 3D V-momentum
SO_sdev(isTvar) == 1.0d0 1.0d0 ! NT tracers
SOstate(isUstr) == 1.0d0 ! surface u-stress
SOstate(isVstr) == 1.0d0 ! surface v-stress
SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracer flux
History Output Variables Switches
- Logical switches (TRUE/FALSE) to activate writing of fields into history output file.Hout(idUvel) == T ! u 3D U-velocity
Hout(idVvel) == T ! v 3D V-velocity
Hout(idWvel) == T ! w 3D W-velocity
Hout(idOvel) == T ! omega omega vertical velocity
Hout(idUbar) == T ! ubar 2D U-velocity
Hout(idVbar) == T ! vbar 2D V-velocity
Hout(idFsur) == T ! zeta free-surface
Hout(idBath) == T ! bath time-dependent bathymetry
Hout(idTvar) == T T ! temp, salt temperature and salinity
Hout(idUsms) == F ! sustr surface U-stress
Hout(idVsms) == F ! svstr surface V-stress
Hout(idUbms) == F ! bustr bottom U-stress
Hout(idVbms) == F ! bvstr bottom V-stress
Hout(idUbrs) == F ! bustrc bottom U-current stress
Hout(idVbrs) == F ! bvstrc bottom V-current stress
Hout(idUbws) == F ! bustrw bottom U-wave stress
Hout(idVbws) == F ! bvstrw bottom V-wave stress
Hout(idUbcs) == F ! bustrcwmax bottom max wave-current U-stress
Hout(idVbcs) == F ! bvstrcwmax bottom max wave-current V-stress
Hout(idUbot) == F ! Ubot bed wave orbital U-velocity
Hout(idVbot) == F ! Vbot bed wave orbital V-velocity
Hout(idUbur) == F ! Ur bottom U-velocity above bed
Hout(idVbvr) == F ! Vr bottom V-velocity above bed
Hout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Hout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Hout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Hout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
Hout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
Hout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Hout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity
Hout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Hout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Hout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Hout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Hout(idW3zy) == F ! Szy 3D radiation stress, Szy component
Hout(idU3rs) == F ! u_Rstress 3D U-radiation stress
Hout(idV3rs) == F ! v_Rstress 3D V-radiation stress
Hout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Hout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity
Hout(idWamp) == F ! Hwave wave height
Hout(idWlen) == F ! Lwave wave length
Hout(idWdir) == F ! Dwave wave direction
Hout(idWptp) == F ! Pwave_top wave surface period
Hout(idWpbt) == F ! Pwave_bot wave bottom period
Hout(idWorb) == F ! Ub_swan wave bottom orbital velocity
Hout(idWdis) == F ! Wave_dissip wave dissipation
Hout(idPair) == F ! Pair surface air pressure
Hout(idUair) == F ! Uair surface U-wind component
Hout(idVair) == F ! Vair surface V-wind component
Hout(idTsur) == F F ! shflux, ssflux surface net heat and salt flux
Hout(idLhea) == F ! latent latent heat flux
Hout(idShea) == F ! sensible sensible heat flux
Hout(idLrad) == F ! lwrad longwave radiation flux
Hout(idSrad) == F ! swrad shortwave radiation flux
Hout(idEmPf) == F ! EminusP E-P flux
Hout(idevap) == F ! evaporation evaporation rate
Hout(idrain) == F ! rain precipitation rate
Hout(idDano) == F ! rho density anomaly
Hout(idVvis) == F ! AKv vertical viscosity
Hout(idTdif) == F ! AKt vertical T-diffusion
Hout(idSdif) == F ! AKs vertical Salinity diffusion
Hout(idHsbl) == F ! Hsbl depth of surface boundary layer
Hout(idHbbl) == F ! Hbbl depth of bottom boundary layer
Hout(idMtke) == F ! tke turbulent kinetic energy
Hout(idMtls) == F ! gls turbulent length scale
- Logical switches (TRUE/FALSE) to activate writing of extra inert passive tracers other than biological and sediment tracers. An inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc. [1:NPT] values are expected. However, these switches can be activated using compact parameter specification.Hout(inert) == T ! dye_01, ... inert passive tracers
- Logical switches (TRUE/FALSE) to activate writing of exposed sediment layer properties into HISTORY output file. Currently, MBOTP properties are expected for the bottom boundary layer and/or sediment models.! idBott( 1=isd50) grain_diameter mean grain diameter
! idBott( 2=idens) grain_density mean grain density
! idBott( 3=iwsed) settling_vel mean settling velocity
! idBott( 4=itauc) erosion_stres critical erosion stress
! idBott( 5=irlen) ripple_length ripple length
! idBott( 6=irhgt) ripple_height ripple height
! idBott( 7=ibwav) bed_wave_amp wave excursion amplitude
! idBott( 8=izdef) Zo_def default bottom roughness
! idBott( 9=izapp) Zo_app apparent bottom roughness
! idBott(10=izNik) Zo_Nik Nikuradse bottom roughness
! idBott(11=izbio) Zo_bio biological bottom roughness
! idBott(12=izbfm) Zo_bedform bed form bottom roughness
! idBott(13=izbld) Zo_bedload bed load bottom roughness
! idBott(14=izwbl) Zo_wbl wave bottom roughness
! idBott(15=iactv) active_layer_thickness active layer thickness
! idBott(16=ishgt) saltation saltation height
!
! 1 1 1 1 1 1 1
! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Hout(idBott) == T T T T T T T T T F F F F F F F
Time-averaged Output Variables Switches
- Logical switches (TRUE/FALSE) to activate writing of fields into time-averaged output file.Aout(idUvel) == T ! u 3D U-velocityy
Aout(idVvel) == T ! v 3D V-velocity
Aout(idWvel) == T ! w 3D W-velocity
Aout(idOvel) == T ! omega omega vertical velocity
Aout(idUbar) == T ! ubar 2D U-velocity
Aout(idVbar) == T ! vbar 2D V-velocity
Aout(idFsur) == T ! zeta free-surface
Aout(idTvar) == T T ! temp, salt temperature and salinity
Aout(idUsms) == F ! sustr surface U-stress
Aout(idVsms) == F ! svstr surface V-stress
Aout(idUbms) == F ! bustr bottom U-stress
Aout(idVbms) == F ! bvstr bottom V-stress
Aout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Aout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Aout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Aout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
Aout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
Aout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Aout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity
Aout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Aout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Aout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Aout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Aout(idW3zy) == F ! Szy 3D radiation stress, Szy component
Aout(idU3rs) == F ! u_Rstress 3D U-radiation stress
Aout(idV3rs) == F ! v_Rstress 3D V-radiation stress
Aout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Aout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity
Aout(idPair) == F ! Pair surface air pressure
Aout(idUair) == F ! Uair surface U-wind component
Aout(idVair) == F ! Vair surface V-wind component
Aout(idTsur) == F F ! shflux, ssflux surface net heat and salt flux
Aout(idLhea) == F ! latent latent heat flux
Aout(idShea) == F ! sensible sensible heat flux
Aout(idLrad) == F ! lwrad longwave radiation flux
Aout(idSrad) == F ! swrad shortwave radiation flux
Aout(idevap) == F ! evaporation evaporation rate
Aout(idrain) == F ! rain precipitation rate
Aout(idDano) == F ! rho density anomaly
Aout(idVvis) == F ! AKv vertical viscosity
Aout(idTdif) == F ! AKt vertical T-diffusion
Aout(idSdif) == F ! AKs vertical Salinity diffusion
Aout(idHsbl) == F ! Hsbl depth of surface boundary layer
Aout(idHbbl) == F ! Hbbl depth of bottom boundary layer
Aout(id2dRV) == F ! pvorticity_bar 2D relative vorticity
Aout(id3dRV) == F ! pvorticity 3D relative vorticity
Aout(id2dPV) == F ! rvorticity_bar 2D potential vorticity
Aout(id3dPV) == F ! rvorticity 3D potential vorticity
Aout(idu3dD) == F ! u_detided detided 3D U-velocity
Aout(idv3dD) == F ! v_detided detided 3D V-velocity
Aout(idu2dD) == F ! ubar_detided detided 2D U-velocity
Aout(idu3dD) == F ! vbar_detided detided 2D V-velocity
Aout(idFsuD) == F ! zeta_detided detided free-surface
Aout(idTrcD) == F F ! temp_detided, ... detided temperature and salinity
Aout(idHUav) == F ! Huon u-volume flux, Huon
Aout(idHVav) == F ! Hvom v-volume flux, Hvom
Aout(idUUav) == F ! uu quadratic <u*u> term
Aout(idUVav) == F ! uv quadratic <u*v> term
Aout(idVVav) == F ! vv quadratic <v*v> term
Aout(idU2av) == F ! ubar2 quadratic <ubar*ubar> term
Aout(idV2av) == F ! vbar2 quadratic <vbar*vbar> term
Aout(idZZav) == F ! zeta2 quadratic <zeta*zeta> term
Aout(idTTav) == F F ! temp2, salt2 quadratic <t*t> T/S terms
Aout(idUTav) == F F ! utemp, usalt quadratic <u*t> T/S terms
Aout(idVTav) == F F ! vtemp, vsalt quadratic <v*t> T/S terms
Aout(iHUTav) == F F ! Huontemp, ... T/S volume flux, <Huon*t>
Aout(iHVTav) == F F ! Hvomtemp, ... T/S volume flux, <Hvom*t>
- Logical switches (TRUE/FALSE) to activate writing of extra inert passive tracers other than biological and sediment tracers into the time-averaged output file. An inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc. [1:NPT,1:Ngrids] values are expected. However, these switches can be activated using compact parameter specification.Aout(inert) == T ! dye_01, ... inert passive tracers
Time-averaged Diagnostic Output Variables Switches
- Logical switches (TRUE/FALSE) to activate writing time-averaged. 2D momentum (ubar, vbar) diagnostic terms into the diagnostics output file.Dout(M2rate) == T ! ubar_accel, ... acceleration
Dout(M2pgrd) == T ! ubar_prsgrd, ... pressure gradient
Dout(M2fcor) == T ! ubar_cor, ... Coriolis force
Dout(M2hadv) == T ! ubar_hadv, ... horizontal total advection
Dout(M2xadv) == T ! ubar_xadv, ... horizontal XI-advection
Dout(M2yadv) == T ! ubar_yadv, ... horizontal ETA-advection
Dout(M2hrad) == T ! ubar_hrad, ... horizontal total radiation stress
Dout(M2hvis) == T ! ubar_hvisc, ... horizontal total viscosity
Dout(M2xvis) == T ! ubar_xvisc, ... horizontal XI-viscosity
Dout(M2yvis) == T ! ubar_yvisc, ... horizontal ETA-viscosity
Dout(M2sstr) == T ! ubar_sstr, ... surface stress
Dout(M2bstr) == T ! ubar_bstr, ... bottom stress
- Logical switches (TRUE/FALSE) to activate writing of time-averaged, 3D momentum (u,v) diagnostic terms into the diagnostics output file. Dout(M2rate) == T ! u_accel, ... acceleration
Dout(M3pgrd) == T ! u_prsgrd, ... pressure gradient
Dout(M3fcor) == T ! u_cor, ... Coriolis force
Dout(M3hadv) == T ! u_hadv, ... horizontal total advection
Dout(M3xadv) == T ! u_xadv, ... horizontal XI-advection
Dout(M3yadv) == T ! u_yadv, ... horizontal ETA-advection
Dout(M3vadv) == T ! u_vadv, ... vertical advection
Dout(M3hrad) == T ! u_hrad, ... horizontal total radiation stress
Dout(M3vrad) == T ! u_vrad, ... vertical radiation stress
Dout(M3hvis) == T ! u_hvisc, ... horizontal total viscosity
Dout(M3xvis) == T ! u_xvisc, ... horizontal XI-viscosity
Dout(M3yvis) == T ! u_yvisc, ... horizontal ETA-viscosity
Dout(M3vvis) == T ! u_vvisc, ... vertical viscosity
- Logical switches (TRUE/FALSE) to activate writing of time-averaged, active (temperature and salinity) and passive (inert) tracer diagnostic terms into the diagnostics output file. [1:NAT+NPT,1:Ngrids] values are expected.Dout(iTrate) == T T ! temp_rate, ... time rate of change
Dout(iThadv) == T T ! temp_hadv, ... horizontal total advection
Dout(iTxadv) == T T ! temp_xadv, ... horizontal XI-advection
Dout(iTyadv) == T T ! temp_yadv, ... horizontal ETA-advection
Dout(iTvadv) == T T ! temp_vadv, ... vertical advection
Dout(iThdif) == T T ! temp_hdiff, ... horizontal total diffusion
Dout(iTxdif) == T T ! temp_xdiff, ... horizontal XI-diffusion
Dout(iTydif) == T T ! temp_ydiff, ... horizontal ETA-diffusion
Dout(iTsdif) == T T ! temp_sdiff, ... horizontal S-diffusion
Dout(iTvdif) == T T ! temp_vdiff, ... vertical diffusion
Generic User Parameters
- NUSER is the number (integer) of user parameters to consider. USER is a vector containing NUSER user parameters (real array).This array is primarily used with the SANITY_CHECK to test the correctness of the tangent linear adjoint models. It contains the model variable and grid point to perturb:! INT(user(1)): tangent state variable to perturbSet tangent and adjoint parameters to the same values if perturbing and reporting the same variable.
! INT(user(2)): adjoint state variable to perturb
! [ isFsur = 1 ] free-surface
! [ isUbar = 2 ] 2D U-momentum
! [ isVbar = 3 ] 2D V-momentum
! [ isUvel = 4 ] 3D U-momentum
! [ isVvel = 5 ] 3D V-momentum
! [ isTvar = 6 ] First tracer (temperature)
! [ ... ] ...
! [ isTvar = ? ] Last tracer
!
! INT(user(3)): I-index of tangent variable to perturb
! INT(user(4)): I-index of adjoint variable to perturb
! INT(user(5)): J-index of tangent variable to perturb
! INT(user(6)): J-index of adjoint variable to perturb
! INT(user(7)): K-index of tangent variable to perturb, if 3D
! INT(user(8)): K-index of adjoint variable to perturb, if 3D
- This parameter could also be used to adjust constants in analytical functions at run time.
NetCDF-4/HDF5 Compression Parameters
- NetCDF-4/HDF5 compression parameters for output files. This capability is used when both HDF5 and DEFLATE C-preprocessing options are activated. The user needs to compile with the NetCDF-4/HDF5 and MPI libraries. File deflation cannot be used in parallel I/O for writing libraries. File deflation cannot be used in parallel I/O for writing to exactly map the data to the disk location. For more information, check NetCDF official website.NC_SHUFFLE = 1 ! if non-zero, turn on shuffle filter
NC_DEFLATE = 1 ! if non-zero, turn on deflate filter
NC_DLEVEL = 1 ! deflate level [0-9]
Input NetCDF Files
NOTE: Starting with revision 460 file names can be up to 256 characters long. Previously only 80 characters were allowed.
- Input NetCDF file names, [1:Ngrids] values are expected.GRDNAME == ocean_grd.nc ! Grid
ININAME == ocean_ini.nc ! NLM initial conditions
ITLNAME == ocean_itl.nc ! TLM initial conditions
IRPNAME == ocean_irp.nc ! RPM initial conditions
IADNAME == ocean_iad.nc ! ADM initial conditions
CLMNAME == ocean_clm.nc ! Climatology
BRYNAME == ocean_bry.nc ! Open boundary conditions
FWDNAME == ocean_fwd.nc ! Forward trajectory
ADSNAME == ocean_ads.nc ! Adjoint sensitivity functionals
- Input forcing NetCDF file name(s). The user has the option to enter several files names for each nested grid. For example, the user may have a different files for wind products, heat fluxes, rivers, tides, etc. The model will scan the file list and will read the needed data from the first file in the list containing the forcing field. Therefore, the order of the file names is very important. If multiple forcing files per grid, enter first all the file names for grid 1, then grid 2, and so on. Use a single line per entry with a continuation (\) symbol at the each entry, except the last one.
Output NetCDF Files
NOTE: Starting with revision 460 file names can be up to 256 characters long. Previously only 80 characters were allowed.
- Output NetCDF file names, [1:Ngrids] files are expected.GSTNAME == ocean_gst.nc ! GST analysis restart
RSTNAME == ocean_rst.nc ! Restart
HISNAME == ocean_his.nc ! History
TLMNAME == ocean_tlm.nc ! TLM history
TLFNAME == ocean_tlf.nc ! Impulse TLM forcing
ADJNAME == ocean_adj.nc ! ADM history
AVGNAME == ocean_avg.nc ! Averages
DIANAME == ocean_dia.nc ! Diagnostics
STANAME == ocean_sta.nc ! Stations
FLTNAME == ocean_flt.nc ! Floats
Additional Input Scripts
NOTE: Starting with revision 460 file names can be up to 256 characters long. Previously only 80 characters were allowed.
- Input ASCII parameter filenames.APARNAM = ROMS/External/s4dvar.in
SPOSNAM = ROMS/External/stations.in
FPOSNAM = ROMS/External/floats.in
BPARNAM = ROMS/External/biology.in
SPARNAM = ROMS/External/sediment.in
USRNAME = ROMS/External/MyFile.dat