Difference between revisions of "Radiant Heat Fluxes"

From WikiROMS
Jump to navigationJump to search
(rough - just saving before heading home)   (change visibility)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
==Radiant Heat Fluxes==
==Radiant Heat Fluxes==
<wikitex>As was seen in [[Sea-Ice_Model#Thermodynamics]], the model thermodynamics requires fluxes of latent and sensible heat and longwave and shortwave radiation.  We follow the lead of [[Bibliography#ParkinsonCL_1979a |Parkinson and Washington]] in computing these terms.</wikitex>
As was seen in [[Sea-Ice_Model#Thermodynamics|Sea-Ice_Model]], the model thermodynamics requires fluxes of latent and sensible heat and longwave and shortwave radiation.  We follow the lead of [[Bibliography#ParkinsonCL_1979a |Parkinson and Washington]] in computing these terms.


===Shortwave Radiation===
===Shortwave Radiation===
<wikitex>
 
The Zillman equation for radiation under cloudless skies is:  
The Zillman equation for radiation under cloudless skies is:  
\begin{equation}
 
  Q_o = {S \cos^2 Z \over (\cos Z + 2.7) e \times 10^{-5} + 1.085
<math display="block">Q_o = {S \cos^2 Z \over (\cos Z + 2.7) e \times 10^{-5} + 1.085 \cos Z + 0.10}</math>
  \cos Z + 0.10}
 
\end{equation}
where the variables are as in the table below.  The cosine of the  
where the variables are as in Table \ref{radvars}.  The cosine of the  
zenith angle is computed using the formula:
zenith angle is computed using the formula:
\begin{equation}
 
  \cos Z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos H\!A .
<math display="block">\cos Z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos H\!A .</math>
\end{equation}
 
The declination is   
The declination is   
\begin{equation}
 
  \delta = 23.44^{\circ} \times \cos \left[ (172 - {\rm day \, of \, year})
<math display="block">\delta = 23.44^{\circ} \times \cos \left[ (172 - {\rm day \, of \, year}) \times 2 \pi / 365 \right]</math>
  \times 2 \pi / 365 \right]
 
\end{equation}
and the hour angle is
and the hour angle is
\begin{equation}
 
  H\!A = (12 \, {\rm hours - solar \, time}) \times \pi / 12 .
<math display="block">H\!A = (12 \, {\rm hours - solar \, time}) \times \pi / 12 .</math>
\end{equation}
 
The correction for cloudiness is given by
The correction for cloudiness is given by
\begin{equation}
 
  SW\!\!\downarrow = Q_o ( 1 - 0.6 c^3) .
<math display="block">SW\!\!\downarrow = Q_o ( 1 - 0.6 c^3) .</math>
\end{equation}
 
An estimate of the cloud fraction $c$ will be provided by Jennifer
The cloud correction is optional since some sources of radiation contain it already.
Francis (\cite{Francis00}).


{| border="1" cellspacing="0" cellpadding="5" align="center"
{| border="1" cellspacing="0" cellpadding="5" align="center"
Line 35: Line 32:
! Description
! Description
|-
|-
| $(a,b)$
| <math>(a,b)</math>
| (9.5, 7.66)
| (9.5, 7.66)
| vapor pressure constants over ice
| vapor pressure constants over ice
|-
|-
| $(a,b)$
| <math>(a,b)</math>
| (7.5, 35.86)
| (7.5, 35.86)
| vapor pressure constants over water
| vapor pressure constants over water
|-
|-
| $c$
| <math>c</math>
|
|
| cloud cover fraction
| cloud cover fraction
|-
|-
| $C_E$
| <math>C_E</math>
| $1.75 \times 10^{-3}$
| <math>1.75 \times 10^{-3}</math>
| transfer coefficient for latent heat  
| transfer coefficient for latent heat  
|-
|-
| $C_H$
| <math>C_H</math>
| $1.75 \times 10^{-3}$
| <math>1.75 \times 10^{-3}</math>
| transfer coefficient for sensible heat
| transfer coefficient for sensible heat
|-
|-
| $c_p$
| <math>c_p</math>
| 1004 J kg$^{-1}$ K$^{-1}$
| <math>1004~ J~ kg^{-1}~ K^{-1}</math>
| specific heat of dry air
| specific heat of dry air
|-
|-
| $\delta$
| <math>\delta</math>
|
|
| declination
| declination
|-
|-
| $e$
| <math>e</math>
|
|
| vapor pressure in pascals
| vapor pressure in pascals
|-
|-
| $e_s$
| <math>e_s</math>
|
|
| saturation vapor pressure
| saturation vapor pressure
|-
|-
| $\epsilon$
| <math>\epsilon</math>
| 0.622
| 0.622
| ratio of molecular weight of water to dry air
| ratio of molecular weight of water to dry air
|-
|-
| $H\!A$
| <math>H\!A</math>
|
|
| hour angle
| hour angle
|-
|-
| $L$
| <math>L</math>
| $2.5 \times 10^6$ J kg$^{-1}$
| <math>2.5 \times 10^6~ J~ kg^{-1}</math>
| latent heat of vaporization
| latent heat of vaporization
|-
|-
| $L$
| <math>L</math>
| $2.834 \times 10^6$ J kg$^{-1}$
| <math>2.834 \times 10^6~ J~ kg^{-1}</math>
| latent heat of sublimation
| latent heat of sublimation
|-
|-
| $\phi$
| <math>\phi</math>
|
|
| latitude
| latitude
|-
|-
| $Q_o$
| <math>Q_o</math>
|
|
| incoming radiation for cloudless skies
| incoming radiation for cloudless skies
|-
|-
| $q_s$
| <math>q_s</math>
|
|
| surface specific humidity
| surface specific humidity
|-
|-
| $q_{10 \rm m}$
| <math>q_{10 \rm m}</math>
|
|
| 10 meter specific humidity
| 10 meter specific humidity
|-
|-
| $\rho_a$
| <math>\rho_a</math>
|
|
| air density
| air density
|-
|-
| $S$
| <math>S</math>
| 1353 W m$^{-2}$
| <math>1353~ W~ m^{-2}</math>
| solar constant
| solar constant
|-
|-
| $\sigma$
| <math>\sigma</math>
| $5.67 \times 10^{-8}$ W m$^{-2}$ K$^{-4}$
| <math>5.67 \times 10^{-8}~ W~ m^{-2}~ K^{-4}</math>
| Stefan-Boltzmann constant
| Stefan-Boltzmann constant
|-
|-
| $T_a$
| <math>T_a</math>
|
|
| air temperature
| air temperature
|-
|-
| $T_d$
| <math>T_d</math>
|
|
| dew point temperature
| dew point temperature
|-
|-
| $T_{s\!f\!c}$
| <math>T_{s\!f\!c}</math>
|
|
| surface temperature of the water/ice/snow
| surface temperature of the water/ice/snow
|-
|-
| $V_{wg}$
| <math>V_{wg}</math>
|
|
| geostrophic wind speed
| geostrophic wind speed
|-
|-
| $Z$
| <math>Z</math>
|
|
| solar zenith angle
| solar zenith angle
|-
|-
|}
|}
</wikitex>
 
===Longwave Radiation===
The clear sky formula for incoming longwave radiation is given by:
 
<math display="block">F\!\downarrow\, = \sigma T_a^4 \left\{1 - 0.261 \exp \left[ -7.77 \times 10^{-4}
(273 - T_a) ^2 \right] \right\}</math>
 
while the cloud correction is given by:
 
<math display="block">LW\!\downarrow\, = (1 + 0.275 c)\, F\!\downarrow .</math>
 
Note that the CORE forcing files contain incoming longwave radiation so only the outgoing needs to be computed.
 
===Sensible heat===
 
The sensible heat is given by the standard aerodynamic formula:
 
<math display="block">H\!\downarrow\, = \rho_a c_p C_H V_{wg} (T_a - T_{s\!f\!c}) .</math>
 
===Latent Heat===
 
The latent heat depends on the vapor pressure and the saturation vapor
pressure given by:
 
<math display="block">\begin{align}
e &= 611 \times 10^{a(T_d - 273.16) / (T_d - b)} \\
e_s &= 611 \times 10^{a(T_{s\!f\!c} - 273.16) / (T_{s\!f\!c} - b)}
\end{align}</math>
 
The vapor pressures are used to compute specific humidities according
to:
 
<math display="block">\begin{align}
q_{10 \rm m} &= {\epsilon e \over p - (1 - \epsilon) e} \\
q_s &= {\epsilon e_s \over p - (1 - \epsilon) e_s}
\end{align}</math>
 
The latent heat is also given by a standard aerodynamic formula:
 
<math display="block">LE\!\downarrow\, = \rho_a L C_E V_{wg} (q_{10 \rm m} - q_s) .</math>
 
Note that these need to be computed independently for the ice-covered
and ice-free portions of each gridbox since the empirical factors
<math>a</math> and <math>b</math> and the factor <math>L</math> differ depending on the surface type.

Latest revision as of 13:13, 18 May 2016

Radiant Heat Fluxes

As was seen in Sea-Ice_Model, the model thermodynamics requires fluxes of latent and sensible heat and longwave and shortwave radiation. We follow the lead of Parkinson and Washington in computing these terms.

Shortwave Radiation

The Zillman equation for radiation under cloudless skies is:

where the variables are as in the table below. The cosine of the zenith angle is computed using the formula:

The declination is

and the hour angle is

The correction for cloudiness is given by

The cloud correction is optional since some sources of radiation contain it already.

Variable Value Description
(9.5, 7.66) vapor pressure constants over ice
(7.5, 35.86) vapor pressure constants over water
cloud cover fraction
transfer coefficient for latent heat
transfer coefficient for sensible heat
specific heat of dry air
declination
vapor pressure in pascals
saturation vapor pressure
0.622 ratio of molecular weight of water to dry air
hour angle
latent heat of vaporization
latent heat of sublimation
latitude
incoming radiation for cloudless skies
surface specific humidity
10 meter specific humidity
air density
solar constant
Stefan-Boltzmann constant
air temperature
dew point temperature
surface temperature of the water/ice/snow
geostrophic wind speed
solar zenith angle

Longwave Radiation

The clear sky formula for incoming longwave radiation is given by:

while the cloud correction is given by:

Note that the CORE forcing files contain incoming longwave radiation so only the outgoing needs to be computed.

Sensible heat

The sensible heat is given by the standard aerodynamic formula:

Latent Heat

The latent heat depends on the vapor pressure and the saturation vapor pressure given by:

The vapor pressures are used to compute specific humidities according to:

The latent heat is also given by a standard aerodynamic formula:

Note that these need to be computed independently for the ice-covered and ice-free portions of each gridbox since the empirical factors and and the factor differ depending on the surface type.