Difference between revisions of "Curvilinear Coordinates"

From WikiROMS
Jump to navigationJump to search
(First whack and I don't know how to fix the error on the 3x3 matrix.)   (change visibility)
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The requirement for a boundary-following coordinate system and for a
<div class="title">Curvilinear Coordinates</div>
laterally variable grid resolution can both be met (for suitably
smooth domains) by introducing an appropriate orthogonal coordinate
transformation in the horizontal.  Let the new coordinates be
<math>\xi(x,y)\!\,</math> and <math>\eta(x,y)\!\,</math> where the relationship of horizontal arc
length to the differential distance is given by:


:<math>(ds)_{\xi} = \left( {1 \over m} \right) d \xi</math>
The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met (for suitably
smooth domains) by introducing an appropriate orthogonal coordinate transformation in the horizontal.  Let the new coordinates be <math>\xi(x,y)</math> and <math>\eta(x,y)</math> where the relationship of horizontal arc length to the differential distance is given by:


:<math>(ds)_{\eta} = \left( {1 \over n} \right) d \eta</math>
<math display="block">(ds)_{\xi} = \left( {1 \over m} \right) d \xi</math>


Here, <math>m(\xi,\eta)\!\,</math> and <math>n(\xi,\eta)\!\,</math> are the scale factors which
<math display="block">(ds)_{\eta} = \left( {1 \over n} \right) d \eta</math>
relate the differential distances <math>(\Delta \xi,\Delta \eta)\!\,</math> to the
actual (physical) arc lengths.


It is helpful to write the equations in vector notation and to use
Here, <math>m(\xi,\eta)</math> and <math>n(\xi,\eta)</math> are the scale factors which relate the differential distances <math>(\Delta \xi,\Delta \eta)</math> to the actual (physical) arc lengths.
the formulas for div, grad, and curl in curvilinear coordinates (see
Batchelor, Appendix 2):


:<math>\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} +
It is helpful to write the equations in vector notation and to use the formulas for div, grad, and curl in curvilinear coordinates (see
[[Bibliography#Batchelor67 |Batchelor, Appendix 2]]):
 
<math display="block">\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} +
       \hat{\eta} n {\partial \phi \over \partial \eta}</math>
       \hat{\eta} n {\partial \phi \over \partial \eta}</math>


:<math>\nabla \cdot \vec{a} = mn \left[
<math display="block">\nabla \cdot \vec{a} = mn \left[
   {\partial \over \partial \xi} \!\! \left( {a \over n} \right) +
   {\partial \over \partial \xi} \!\! \left( {a \over n} \right) +
   {\partial \over \partial \eta} \!\! \left( {b \over m} \right)
   {\partial \over \partial \eta} \!\! \left( {b \over m} \right)
   \right]</math>
   \right]</math>


:<math>\nabla \times \vec{a} = mn \left| \begin{array}{ccc}
<math display="block">\nabla \times \vec{a} = mn \left| \begin{matrix}
  \vspace{1 mm}
   {\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \\
   {\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \\
  \vspace{1 mm}
   {\partial \over \partial \xi} &
   {\partial \over \partial \xi} &
   {\partial \over \partial \eta} &
   {\partial \over \partial \eta} &
   {\partial \over \partial z} \\
   {\partial \over \partial z} \\
   {a \over m} & {b \over n} & c
   {a \over m} & {b \over n} & c
   \end{array} \right|</math>
   \end{matrix} \right|</math>


:<math>\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[  
<math display="block">\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[  
   {\partial \over \partial \xi} \!\! \left( {m \over n}  
   {\partial \over \partial \xi} \!\! \left( {m \over n}  
   {\partial \phi \over \partial \xi} \right) +
   {\partial \phi \over \partial \xi} \right) +
Line 42: Line 35:
   {\partial \phi \over \partial \eta} \right) \right]</math>
   {\partial \phi \over \partial \eta} \right) \right]</math>


where <math>\phi\!\,</math> is a scalar and <math>\vec{a}\!\,</math> is a vector with components
where <math>\phi</math> is a scalar and <math>\vec{a}</math> is a vector with components <math>a</math>, <math>b</math>, and <math>c</math>.
<math>a\!\,</math>, <math>b\!\,</math>, and <math>c\!\,</math>.

Latest revision as of 00:51, 18 May 2016

Curvilinear Coordinates

The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met (for suitably smooth domains) by introducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be and where the relationship of horizontal arc length to the differential distance is given by:

Here, and are the scale factors which relate the differential distances to the actual (physical) arc lengths.

It is helpful to write the equations in vector notation and to use the formulas for div, grad, and curl in curvilinear coordinates (see Batchelor, Appendix 2):

where is a scalar and is a vector with components , , and .