Terrain-Following Coordinate Transformation: Difference between revisions

From WikiROMS
Jump to navigationJump to search
No edit summary   (change visibility)
No edit summary   (change visibility)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="title">Terrain-Following Coordinate Transformation</div>
<div class="title">Terrain-Following Coordinate Transformation</div>
<wikitex>From the point of view of the computational model, it is highly
From the point of view of the computational model, it is highly
convenient to introduce a stretched vertical coordinate system which
convenient to introduce a stretched vertical coordinate system which
essentially "flattens out" the variable bottom at $z = -h(x,y)$.
essentially "flattens out" the variable bottom at <math>z = -h(x,y)</math>.
Such "$\sigma$" coordinate systems have long been used, with slight
Such "<math>\sigma</math>" coordinate systems have long been used, with slight
appropriate modification, in both meteorology and oceanography
appropriate modification, in both meteorology and oceanography
[e.g., Phillips (1957) and Freeman et al. (1972)].
[e.g., Phillips (1957) and Freeman et al. (1972)].
To proceed, we make the coordinate transformation:
To proceed, we make the coordinate transformation:


$$ \eqalign{ \hat{x} &= x \cr
{| class="eqno"
\hat{y} &= y \cr
|<math display="block"> \begin{align} \hat{x} &= x \\
\sigma &= \sigma(x,y,z) \cr
\hat{y} &= y \\
z &= z(x,y,\sigma) \cr
\sigma &= \sigma(x,y,z) \\
\hat{t} &= t \cr } \eqno{(1)}$$
z &= z(x,y,\sigma) \\
\hat{t} &= t \end{align} </math> <!--\eqno{(1)}-->
|(1)
|}


See [[Vertical S-coordinate]] for the form of $\sigma$ used here. Also, see [[Bibliography#ShchepetkinAF_2005a | Shchepetkin and McWilliams, 2005]] for a discussion about the nature of this form of $\sigma$ and how it
See [[Vertical S-coordinate]] for the form of <math>\sigma</math> used here. Also, see [[Bibliography#ShchepetkinAF_2005a | Shchepetkin and McWilliams, 2005]] for a discussion about the nature of this form of <math>\sigma</math> and how it
differs from that used in SCRUM.
differs from that used in SCRUM.


In the stretched system, the vertical coordinate $\sigma$ spans the range $-1 \leq \sigma \leq 0$; we are therefore left with level upper ($\sigma = 0$) and lower ($\sigma = -1$) bounding surfaces.  The chain rules for this transformation are:
In the stretched system, the vertical coordinate <math>\sigma</math> spans the range <math>-1 \leq \sigma \leq 0</math>; we are therefore left with level upper (<math>\sigma = 0</math>) and lower (<math>\sigma = -1</math>) bounding surfaces.  The chain rules for this transformation are:


$$ \eqalign{ \left( { \partial \over \partial x } \right)_z &=\left( { \partial \over \partial x } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_\sigma { \partial \over \partial \sigma}\cr
{| class="eqno"
\noalign{\smallskip}
|<math display="block"> \begin{align} \left( { \partial \over \partial x } \right)_z &= \left( { \partial \over \partial x } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_\sigma { \partial \over \partial \sigma} \\ \\
\left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \cr
\left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \\ \\
\noalign{\smallskip}
{ \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} =  { 1 \over H_z } { \partial \over \partial \sigma } \end{align} </math> <!--\eqno{(2)-->
{ \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} =  { 1 \over H_z } { \partial \over \partial \sigma } \cr} \eqno{(2)} $$
|(2)
|}


where
where


$$H_z \equiv { \partial z \over \partial \sigma } \eqno{(3)}$$
{| class="eqno"
|<math display="block">H_z \equiv { \partial z \over \partial \sigma } </math><!--\eqno{(3)}-->
|(3)
|}


As a trade-off for this geometric
As a trade-off for this geometric simplification, the [[Equations of Motion|dynamic equations]] become somewhat more complicated.  The resulting dynamic equations, after dropping the carats, are:
simplification, the [[Equations of Motion|dynamic equations]] become somewhat more
complicated.  The resulting dynamic equations are, after dropping the
carats:


$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial \sigma} \right] + {\cal F}_u + {\cal D}_u \eqno{(4)}$$
{| class="eqno"
|<math display="block">{\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial \sigma} \right] + {\cal F}_u + {\cal D}_u </math><!--\eqno{(4)}-->
|(4)
|}


$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial \sigma} \right] + {\cal F}_v + {\cal D}_v \eqno{(5)}$$


$$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial \sigma} \right] + {\cal F}_{C} + {\cal D}_{C} \eqno{(6)}$$
{| class="eqno"
|<math display="block">\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial \sigma} \right] + {\cal F}_v + {\cal D}_v </math><!--\eqno{(5)}-->
|(5)
|}


$$\rho = \rho(T,S,P) \eqno{(7)}$$


$$\frac{\partial \phi}{\partial \sigma} = \left( \frac{-gH_z\rho} {\rho_o} \right) \eqno{(8)}$$
{| class="eqno"
|<math display="block">\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial \sigma} \right] + {\cal F}_{C} + {\cal D}_{C} </math><!--\eqno{(6)}-->
|(6)
|}
 
 
{| class="eqno"
|<math display="block">\rho = \rho(T,S,P) </math><!--\eqno{(7)}-->
|(7)
|}
 
 
{| class="eqno"
|<math display="block">\frac{\partial \phi}{\partial \sigma} = \left( \frac{-gH_z\rho} {\rho_o} \right) </math><!--\eqno{(8)}-->
|(8)
|}
 
 
{| class="eqno"
|<math display="block">{\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial \sigma} = 0 </math><!--\eqno{(9)}-->
|(9)
|}


$${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial \sigma} = 0 \eqno{(9)}$$
where
where


$$\vec{v} = (u,v,\Omega) \eqno{(10)}$$
{| class="eqno"
|<math display="block">\vec{v} = (u,v,\Omega) </math><!--\eqno{(10)}-->
|(10)
|}


$$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v
{| class="eqno"
   \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} \eqno{(11)}$$
|<math display="block">\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v
   \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} </math><!--\eqno{(11)}-->
|(11)
|}


The vertical velocity in $\sigma$ coordinates is
The vertical velocity in <math>\sigma</math> coordinates is


$$\Omega (x,y,\sigma,t) = {1 \over H_z} \left[ w - {z+h \over \zeta + h} {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right] \eqno{(12)}$$
{| class="eqno"
|<math display="block">\Omega (x,y,\sigma,t) = {1 \over H_z} \left[ w - {z+h \over \zeta + h} {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right] </math><!--\eqno{(12)}-->
|(12)
|}


and
and


$$w = {\partial z \over \partial t} + u {\partial z \over \partial x}
{| class="eqno"
   + v {\partial z \over \partial y} + \Omega H_z \eqno{(13)}$$
|<math display="block">w = {\partial z \over \partial t} + u {\partial z \over \partial x}
</wikitex>
   + v {\partial z \over \partial y} + \Omega H_z </math><!--\eqno{(13)}-->
|(13)
|}
 
==Vertical Boundary Conditions==
==Vertical Boundary Conditions==
<wikitex>In the stretched coordinate system, the vertical boundary conditions
In the stretched coordinate system, the vertical boundary conditions
become:
become:


top ($\sigma = 0$):
top (<math>\sigma = 0</math>):
$$ \eqalign{ \left( \frac{K_m}{H_z}\right)& \frac{\partial u}{\partial \sigma} = \tau^x_s (x,y,t) \cr
 
\left( \frac{K_m}{H_z}\right)& \frac{\partial v}{\partial \sigma} = \tau^y_s(x,y,t)\cr
{| class="eqno"
\left( \frac{K_C}{H_z}\right)& \frac{\partial C}{\partial \sigma} = {Q_C \over \rho_o c_P}\cr
|<math display="block"> \begin{align} \left( \frac{K_m}{H_z}\right) \frac{\partial u}{\partial \sigma} &= \tau^x_s (x,y,t) \\
&\Omega = 0 \cr} \eqno{(14)} $$
\left( \frac{K_m}{H_z}\right) \frac{\partial v}{\partial \sigma} &= \tau^y_s(x,y,t)\\
\left( \frac{K_C}{H_z}\right) \frac{\partial C}{\partial \sigma} &= {Q_C \over \rho_o c_P}\\
\Omega &= 0 \end{align}</math><!--\eqno{(14)}-->
|(14)
|}
 
and bottom (<math>\sigma = -1</math>):


and bottom ($\sigma = -1$):
{| class="eqno"
$$ \eqalign{ \left( \frac{K_m}{H_z}\right)& \frac{\partial u}{\partial \sigma} = \tau^x_b (x,y,t) \cr
|<math display="block"> \begin{align} \left( \frac{K_m}{H_z}\right) \frac{\partial u}{\partial \sigma} &= \tau^x_b (x,y,t) \\
\left( \frac{K_m}{H_z}\right)& \frac{\partial v}{\partial \sigma} = \tau^y_b (x,y,t) \cr
\left( \frac{K_m}{H_z}\right) \frac{\partial v}{\partial \sigma} &= \tau^y_b (x,y,t) \\
\left( \frac{K_C}{H_z}\right)& \frac{\partial C}{\partial \sigma} = 0 \cr
\left( \frac{K_C}{H_z}\right) \frac{\partial C}{\partial \sigma} &= 0 \\
&\Omega = 0 \cr} \eqno{(15)}$$
\Omega &= 0 \end{align}</math><!--\eqno{(15)}-->
|(15)
|}


Note the simplification of the boundary conditions on vertical
Note the simplification of the boundary conditions on vertical
velocity that arises from the $\sigma$ coordinate transformation.
velocity that arises from the <math>\sigma</math> coordinate transformation.
</wikitex>

Latest revision as of 13:17, 4 August 2015

Terrain-Following Coordinate Transformation

From the point of view of the computational model, it is highly convenient to introduce a stretched vertical coordinate system which essentially "flattens out" the variable bottom at . Such "" coordinate systems have long been used, with slight appropriate modification, in both meteorology and oceanography [e.g., Phillips (1957) and Freeman et al. (1972)]. To proceed, we make the coordinate transformation:

(1)

See Vertical S-coordinate for the form of used here. Also, see Shchepetkin and McWilliams, 2005 for a discussion about the nature of this form of and how it differs from that used in SCRUM.

In the stretched system, the vertical coordinate spans the range ; we are therefore left with level upper () and lower () bounding surfaces. The chain rules for this transformation are:

(2)

where

(3)

As a trade-off for this geometric simplification, the dynamic equations become somewhat more complicated. The resulting dynamic equations, after dropping the carats, are:

(4)


(5)


(6)


(7)


(8)


(9)

where

(10)
(11)

The vertical velocity in coordinates is

(12)

and

(13)

Vertical Boundary Conditions

In the stretched coordinate system, the vertical boundary conditions become:

top ():

(14)

and bottom ():

(15)

Note the simplification of the boundary conditions on vertical velocity that arises from the coordinate transformation.