Terrain-Following Coordinate Transformation: Difference between revisions
No edit summary (change visibility) |
No edit summary (change visibility) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
<div class="title">Terrain-Following Coordinate Transformation</div> | <div class="title">Terrain-Following Coordinate Transformation</div> | ||
From the point of view of the computational model, it is highly | |||
convenient to introduce a stretched vertical coordinate system which | convenient to introduce a stretched vertical coordinate system which | ||
essentially "flattens out" the variable bottom at | essentially "flattens out" the variable bottom at <math>z = -h(x,y)</math>. | ||
Such " | Such "<math>\sigma</math>" coordinate systems have long been used, with slight | ||
appropriate modification, in both meteorology and oceanography | appropriate modification, in both meteorology and oceanography | ||
[e.g., Phillips (1957) and Freeman et al. (1972)]. | [e.g., Phillips (1957) and Freeman et al. (1972)]. | ||
To proceed, we make the coordinate transformation: | To proceed, we make the coordinate transformation: | ||
{| class="eqno" | |||
\hat{y} &= y \ | |<math display="block"> \begin{align} \hat{x} &= x \\ | ||
\sigma &= \sigma(x,y,z) \ | \hat{y} &= y \\ | ||
z &= z(x,y,\sigma) \ | \sigma &= \sigma(x,y,z) \\ | ||
\hat{t} &= t \ | z &= z(x,y,\sigma) \\ | ||
\hat{t} &= t \end{align} </math> <!--\eqno{(1)}--> | |||
|(1) | |||
|} | |||
See [[Vertical S-coordinate]] for the form of | See [[Vertical S-coordinate]] for the form of <math>\sigma</math> used here. Also, see [[Bibliography#ShchepetkinAF_2005a | Shchepetkin and McWilliams, 2005]] for a discussion about the nature of this form of <math>\sigma</math> and how it | ||
differs from that used in SCRUM. | differs from that used in SCRUM. | ||
In the stretched system, the vertical coordinate | In the stretched system, the vertical coordinate <math>\sigma</math> spans the range <math>-1 \leq \sigma \leq 0</math>; we are therefore left with level upper (<math>\sigma = 0</math>) and lower (<math>\sigma = -1</math>) bounding surfaces. The chain rules for this transformation are: | ||
{| class="eqno" | |||
\ | |<math display="block"> \begin{align} \left( { \partial \over \partial x } \right)_z &= \left( { \partial \over \partial x } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_\sigma { \partial \over \partial \sigma} \\ \\ | ||
\left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \ | \left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \\ \\ | ||
\ | { \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} = { 1 \over H_z } { \partial \over \partial \sigma } \end{align} </math> <!--\eqno{(2)--> | ||
{ \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} = { 1 \over H_z } { \partial \over \partial \sigma } \ | |(2) | ||
|} | |||
where | where | ||
{| class="eqno" | |||
|<math display="block">H_z \equiv { \partial z \over \partial \sigma } </math><!--\eqno{(3)}--> | |||
|(3) | |||
|} | |||
As a trade-off for this geometric | As a trade-off for this geometric simplification, the [[Equations of Motion|dynamic equations]] become somewhat more complicated. The resulting dynamic equations, after dropping the carats, are: | ||
simplification, the [[Equations of Motion|dynamic equations]] become somewhat more | |||
complicated. The resulting dynamic equations | |||
carats: | |||
{| class="eqno" | |||
|<math display="block">{\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial \sigma} \right] + {\cal F}_u + {\cal D}_u </math><!--\eqno{(4)}--> | |||
|(4) | |||
|} | |||
{| class="eqno" | |||
|<math display="block">\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial \sigma} \right] + {\cal F}_v + {\cal D}_v </math><!--\eqno{(5)}--> | |||
|(5) | |||
|} | |||
{| class="eqno" | |||
|<math display="block">\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial \sigma} \right] + {\cal F}_{C} + {\cal D}_{C} </math><!--\eqno{(6)}--> | |||
|(6) | |||
|} | |||
{| class="eqno" | |||
|<math display="block">\rho = \rho(T,S,P) </math><!--\eqno{(7)}--> | |||
|(7) | |||
|} | |||
{| class="eqno" | |||
|<math display="block">\frac{\partial \phi}{\partial \sigma} = \left( \frac{-gH_z\rho} {\rho_o} \right) </math><!--\eqno{(8)}--> | |||
|(8) | |||
|} | |||
{| class="eqno" | |||
|<math display="block">{\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial \sigma} = 0 </math><!--\eqno{(9)}--> | |||
|(9) | |||
|} | |||
where | where | ||
{| class="eqno" | |||
|<math display="block">\vec{v} = (u,v,\Omega) </math><!--\eqno{(10)}--> | |||
|(10) | |||
|} | |||
{| class="eqno" | |||
\frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} \eqno{(11)} | |<math display="block">\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v | ||
\frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} </math><!--\eqno{(11)}--> | |||
|(11) | |||
|} | |||
The vertical velocity in | The vertical velocity in <math>\sigma</math> coordinates is | ||
{| class="eqno" | |||
|<math display="block">\Omega (x,y,\sigma,t) = {1 \over H_z} \left[ w - {z+h \over \zeta + h} {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right] </math><!--\eqno{(12)}--> | |||
|(12) | |||
|} | |||
and | and | ||
{| class="eqno" | |||
+ v {\partial z \over \partial y} + \Omega H_z \eqno{(13)} | |<math display="block">w = {\partial z \over \partial t} + u {\partial z \over \partial x} | ||
+ v {\partial z \over \partial y} + \Omega H_z </math><!--\eqno{(13)}--> | |||
|(13) | |||
|} | |||
==Vertical Boundary Conditions== | ==Vertical Boundary Conditions== | ||
In the stretched coordinate system, the vertical boundary conditions | |||
become: | become: | ||
top ( | top (<math>\sigma = 0</math>): | ||
\left( \frac{K_m}{H_z}\right) | {| class="eqno" | ||
\left( \frac{K_C}{H_z}\right) | |<math display="block"> \begin{align} \left( \frac{K_m}{H_z}\right) \frac{\partial u}{\partial \sigma} &= \tau^x_s (x,y,t) \\ | ||
\left( \frac{K_m}{H_z}\right) \frac{\partial v}{\partial \sigma} &= \tau^y_s(x,y,t)\\ | |||
\left( \frac{K_C}{H_z}\right) \frac{\partial C}{\partial \sigma} &= {Q_C \over \rho_o c_P}\\ | |||
\Omega &= 0 \end{align}</math><!--\eqno{(14)}--> | |||
|(14) | |||
|} | |||
and bottom (<math>\sigma = -1</math>): | |||
{| class="eqno" | |||
|<math display="block"> \begin{align} \left( \frac{K_m}{H_z}\right) \frac{\partial u}{\partial \sigma} &= \tau^x_b (x,y,t) \\ | |||
\left( \frac{K_m}{H_z}\right) | \left( \frac{K_m}{H_z}\right) \frac{\partial v}{\partial \sigma} &= \tau^y_b (x,y,t) \\ | ||
\left( \frac{K_C}{H_z}\right) | \left( \frac{K_C}{H_z}\right) \frac{\partial C}{\partial \sigma} &= 0 \\ | ||
\Omega &= 0 \end{align}</math><!--\eqno{(15)}--> | |||
|(15) | |||
|} | |||
Note the simplification of the boundary conditions on vertical | Note the simplification of the boundary conditions on vertical | ||
velocity that arises from the | velocity that arises from the <math>\sigma</math> coordinate transformation. | ||
Latest revision as of 13:17, 4 August 2015
From the point of view of the computational model, it is highly convenient to introduce a stretched vertical coordinate system which essentially "flattens out" the variable bottom at . Such "" coordinate systems have long been used, with slight appropriate modification, in both meteorology and oceanography [e.g., Phillips (1957) and Freeman et al. (1972)]. To proceed, we make the coordinate transformation:
(1) |
See Vertical S-coordinate for the form of used here. Also, see Shchepetkin and McWilliams, 2005 for a discussion about the nature of this form of and how it differs from that used in SCRUM.
In the stretched system, the vertical coordinate spans the range ; we are therefore left with level upper () and lower () bounding surfaces. The chain rules for this transformation are:
(2) |
where
(3) |
As a trade-off for this geometric simplification, the dynamic equations become somewhat more complicated. The resulting dynamic equations, after dropping the carats, are:
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
where
(10) |
(11) |
The vertical velocity in coordinates is
(12) |
and
(13) |
Vertical Boundary Conditions
In the stretched coordinate system, the vertical boundary conditions become:
top ():
(14) |
and bottom ():
(15) |
Note the simplification of the boundary conditions on vertical velocity that arises from the coordinate transformation.