Difference between revisions of "Curvilinear Coordinates"

From WikiROMS
Jump to navigationJump to search
(Change to wikitex, whew!)   (change visibility)
Line 1: Line 1:
<div class="title">Curvilinear Coordinates</div>
<div class="title">Curvilinear Coordinates</div>
 
<wikitex>
The requirement for a boundary-following coordinate system and for a
The requirement for a boundary-following coordinate system and for a
laterally variable grid resolution can both be met (for suitably
laterally variable grid resolution can both be met (for suitably
smooth domains) by introducing an appropriate orthogonal coordinate
smooth domains) by introducing an appropriate orthogonal coordinate
transformation in the horizontal.  Let the new coordinates be
transformation in the horizontal.  Let the new coordinates be
<math>\xi(x,y)\!\,</math> and <math>\eta(x,y)\!\,</math> where the relationship of horizontal arc
$\xi(x,y)$ and $\eta(x,y)$ where the relationship of horizontal arc
length to the differential distance is given by:
length to the differential distance is given by:


:<math>(ds)_{\xi} = \left( {1 \over m} \right) d \xi</math>
$$(ds)_{\xi} = \left( {1 \over m} \right) d \xi$$


:<math>(ds)_{\eta} = \left( {1 \over n} \right) d \eta</math>
$$(ds)_{\eta} = \left( {1 \over n} \right) d \eta$$


Here, <math>m(\xi,\eta)\!\,</math> and <math>n(\xi,\eta)\!\,</math> are the scale factors which
Here, $m(\xi,\eta)$ and $n(\xi,\eta)$ are the scale factors which
relate the differential distances <math>(\Delta \xi,\Delta \eta)\!\,</math> to the
relate the differential distances $(\Delta \xi,\Delta \eta)$ to the
actual (physical) arc lengths.
actual (physical) arc lengths.


It is helpful to write the equations in vector notation and to use
It is helpful to write the equations in vector notation and to use
the formulas for div, grad, and curl in curvilinear coordinates (see
the formulas for div, grad, and curl in curvilinear coordinates (see
Batchelor, Appendix 2):
[[Bibliography#Batchelor67 |Batchelor, Appendix 2]]):


:<math>\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} +
$$\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} +
       \hat{\eta} n {\partial \phi \over \partial \eta}</math>
       \hat{\eta} n {\partial \phi \over \partial \eta}$$


:<math>\nabla \cdot \vec{a} = mn \left[
$$\nabla \cdot \vec{a} = mn \left[
   {\partial \over \partial \xi} \!\! \left( {a \over n} \right) +
   {\partial \over \partial \xi} \!\! \left( {a \over n} \right) +
   {\partial \over \partial \eta} \!\! \left( {b \over m} \right)
   {\partial \over \partial \eta} \!\! \left( {b \over m} \right)
   \right]</math>
   \right]$$


:<math>\nabla \times \vec{a} = mn \left| \begin{array}{ccc}
$$
  \vspace{1 mm}
\nabla \times \vec{a} = mn \left| \matrix{
   {\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \\
   {\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \cr
  \vspace{1 mm}
   {\partial \over \partial \xi} &
   {\partial \over \partial \xi} &
   {\partial \over \partial \eta} &
   {\partial \over \partial \eta} &
   {\partial \over \partial z} \\
   {\partial \over \partial z} \cr
   {a \over m} & {b \over n} & c
   {a \over m} & {b \over n} & c
   \end{array} \right|</math>
   } \right|
$$


:<math>\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[  
$$\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[  
   {\partial \over \partial \xi} \!\! \left( {m \over n}  
   {\partial \over \partial \xi} \!\! \left( {m \over n}  
   {\partial \phi \over \partial \xi} \right) +
   {\partial \phi \over \partial \xi} \right) +
   {\partial \over \partial \eta} \!\! \left( {n \over m}  
   {\partial \over \partial \eta} \!\! \left( {n \over m}  
   {\partial \phi \over \partial \eta} \right) \right]</math>
   {\partial \phi \over \partial \eta} \right) \right]$$


where <math>\phi\!\,</math> is a scalar and <math>\vec{a}\!\,</math> is a vector with components
where $\phi$ is a scalar and $\vec{a}$ is a vector with components
<math>a\!\,</math>, <math>b\!\,</math>, and <math>c\!\,</math>.
$a$, $b$, and $c$.
</wikitex>

Revision as of 00:46, 23 September 2009

Curvilinear Coordinates

<wikitex> The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met (for suitably smooth domains) by introducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be $\xi(x,y)$ and $\eta(x,y)$ where the relationship of horizontal arc length to the differential distance is given by:

$$(ds)_{\xi} = \left( {1 \over m} \right) d \xi$$

$$(ds)_{\eta} = \left( {1 \over n} \right) d \eta$$

Here, $m(\xi,\eta)$ and $n(\xi,\eta)$ are the scale factors which relate the differential distances $(\Delta \xi,\Delta \eta)$ to the actual (physical) arc lengths.

It is helpful to write the equations in vector notation and to use the formulas for div, grad, and curl in curvilinear coordinates (see Batchelor, Appendix 2):

$$\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} +

      \hat{\eta} n {\partial \phi \over \partial \eta}$$

$$\nabla \cdot \vec{a} = mn \left[

  {\partial \over \partial \xi} \!\! \left( {a \over n} \right) +
  {\partial \over \partial \eta} \!\! \left( {b \over m} \right)
  \right]$$

$$ \nabla \times \vec{a} = mn \left| \matrix{

  {\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \cr
  {\partial \over \partial \xi} &
  {\partial \over \partial \eta} &
  {\partial \over \partial z} \cr
  {a \over m} & {b \over n} & c
  } \right|

$$

$$\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[

  {\partial \over \partial \xi} \!\! \left( {m \over n} 
  {\partial \phi \over \partial \xi} \right) +
  {\partial \over \partial \eta} \!\! \left( {n \over m} 
  {\partial \phi \over \partial \eta} \right) \right]$$

where $\phi$ is a scalar and $\vec{a}$ is a vector with components $a$, $b$, and $c$. </wikitex>