Difference between revisions of "LSF Tides"

From WikiROMS
Jump to navigationJump to search
Line 1: Line 1:
<div class="title">Least Squares Fit for ROMS Tides</div>
<div class="title">Least Squares Fit for ROMS Tides</div>


<math>\phi(t) = \bar\phi + \sum_{k=1}^N A_k \sin\omega_k t + \sum_{k=1}^N B_k \cos\omega_k t</math>
<wikitex>$$\phi(t) = \bar\phi + \sum_{k=1}^N A_k \sin\omega_k t + \sum_{k=1}^N B_k \cos\omega_k t$$
:<math>\,\!\phi</math>: state variables
:$\phi$: state variables
:<math>\,\!\omega_k</math>: tidal frequency
:$\omega_k$: tidal frequency
:<math>\,\!A_k, B_k</math>: amplitude
:$A_k, B_k$: amplitude
:<math>\,\!N</math>: number of harmonics
:$N$: number of harmonics


To minimize cost function <math>\varepsilon^2</math>
To minimize cost function $\varepsilon^2$
:<math>\varepsilon^2 = \frac{1}{T} \int_{t_1}^{t_2} \left[\phi - \left(\bar\phi + \sum_{k=1}^N (A_k \sin\omega_k t) + \sum_{k=1}^N (B_k \cos\omega_k t)\right)\right]^2dt</math>
:$$\varepsilon^2 = \frac{1}{T} \int_{t_1}^{t_2} \left[\phi - \left(\bar\phi + \sum_{k=1}^N (A_k \sin\omega_k t) + \sum_{k=1}^N (B_k \cos\omega_k t)\right)\right]^2dt$$
:<math>\,\!\phi,  A_k,  B_k</math> are unknowns
:$\phi,  A_k,  B_k$ are unknowns


In discrete space:
In discrete space:
:<math>\varepsilon^2 = \frac{1}{M} \sum_{i=1}^M \left[\phi_i - \left(\bar\phi + \sum_{k=1}^N (A_k \sin\omega_k t_i) + \sum_{k=1}^N (B_k \cos\omega_k t_i)\right)\right]^2</math>
$$\varepsilon^2 = \frac{1}{M} \sum_{i=1}^M \left[\phi_i - \left(\bar\phi + \sum_{k=1}^N (A_k \sin\omega_k t_i) + \sum_{k=1}^N (B_k \cos\omega_k t_i)\right)\right]^2$$


at the minimum
at the minimum
:<math>\frac{\partial \varepsilon^2}{\partial \bar\phi} = 0</math>


:<math>\frac{\partial \varepsilon^2}{\partial A_k} = 0\;\;\;\;\;\;k = 1, ..., N</math>
$$\frac{\partial \varepsilon^2}{\partial \bar\phi} = 0$$


:<math>\frac{\partial \varepsilon^2}{\partial B_k} = 0</math>


$$\frac{\partial \varepsilon^2}{\partial A_k} = 0\;\;\;\;\;\;k = 1, ..., N$$


:<math>\frac{\partial \varepsilon^2}{\partial \bar\phi} = 0</math>
::<math>\sum_{i=1}^M \left[-2\phi_i + 2\bar\phi + 2 \sum_{k=1}^N (A_k \sin\omega_k t_i) + 2 \sum_{k=1}^N (B_k \sin\omega_k t_i)\right] = 0</math>


$$\frac{\partial \varepsilon^2}{\partial B_k} = 0$$


:<math>\frac{\partial \varepsilon^2}{\partial A_k} = 0</math>
::<math>\begin{align}\sum_{i=1}^M \Bigg[ &-2 \phi_i \sin\omega_k t_i + 2 \bar\phi \sin\omega_k t_i + 2\sum_{p=1}^N (A_p \sin\omega_p t_i \sin\omega_k t_i) \\ &+ 2\sum_{p=1}^N (B_p\cos\omega_p t_i \sin\omega_k t_i)\Bigg] = 0\end{align}</math>


$$\frac{\partial \varepsilon^2}{\partial \bar\phi} = 0$$


:<math>\frac{\partial \varepsilon^2}{\partial B_k} = 0</math>
::<math>\begin{align}\sum_{i=1}^M \Bigg[ &-2 \phi_i \cos\omega_k t_i + 2 \bar\phi \cos\omega_k t_i + 2\sum_{p=1}^N (A_p \sin\omega_p t_i \cos\omega_k t_i) \\
&+ 2\sum_{p=1}^N (B_p\cos\omega_p t_i \cos\omega_k t_i) \Bigg] = 0\end{align}</math>


$$\sum_{i=1}^M \left[-2\phi_i + 2\bar\phi + 2 \sum_{k=1}^N (A_k \sin\omega_k t_i) + 2 \sum_{k=1}^N (B_k \sin\omega_k t_i)\right] = 0$$


in matrix form (N harmonics). '''Note:''' all instances of <math>\sum</math> are actually <math>\sum_{i=1}^M</math> where M is the number of time-steps in the time-averaging window.


:<math>\begin{array}{cccc}
$$\frac{\partial \varepsilon^2}{\partial A_k} = 0$$
\left[ \begin{array} {cccccc}
$$\eqalign{\sum_{i=1}^M \Bigg[ &-2 \phi_i \sin\omega_k t_i + 2 \bar\phi \sin\omega_k t_i + 2\sum_{p=1}^N (A_p \sin\omega_p t_i \sin\omega_k t_i) \cr
\\
&+ 2\sum_{p=1}^N (B_p\cos\omega_p t_i \sin\omega_k t_i)\Bigg] = 0}$$
 
 
$$\frac{\partial \varepsilon^2}{\partial B_k} = 0$$
$$\eqalign{\sum_{i=1}^M \Bigg[ &-2 \phi_i \cos\omega_k t_i + 2 \bar\phi \cos\omega_k t_i + 2\sum_{p=1}^N (A_p \sin\omega_p t_i \cos\omega_k t_i) \cr
&+ 2\sum_{p=1}^N (B_p\cos\omega_p t_i \cos\omega_k t_i) \Bigg] = 0}$$
 
 
in matrix form (N harmonics). '''Note:''' all instances of $\sum$ are actually $\sum_{i=1}^M$ where M is the number of time-steps in the time-averaging window.
 
$$\matrix{\left[ \matrix{
\cr
M & \sum \sin\omega_1 t_i & \sum \sin\omega_2 t_i
M & \sum \sin\omega_1 t_i & \sum \sin\omega_2 t_i
& \cdots & \sum \cos\omega_1 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i & \cdots \cr
\\
\cr
\sum \sin\omega_1 t_i & \sum \sin^2 \omega_1 t_i & \sum \sin\omega_2 t_i \sin\omega_1 t_i
\sum \sin\omega_1 t_i & \sum \sin^2 \omega_1 t_i & \sum \sin\omega_2 t_i \sin\omega_1 t_i
& \cdots & \sum \cos\omega_1 t_i \sin\omega_1 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \sin\omega_1 t_i & \cdots \cr
\\
\cr
\sum \sin\omega_2 t_i & \sum \sin\omega_1 t_i \sin\omega_2 t_i & \sum \sin^2 \omega_2 t_i
\sum \sin\omega_2 t_i & \sum \sin\omega_1 t_i \sin\omega_2 t_i & \sum \sin^2 \omega_2 t_i
& \cdots & \sum \cos\omega_1 t_i \sin\omega_2 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \sin\omega_2 t_i & \cdots \cr
\\
\cr
\vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \cdots & \cdots & \cdots & \cdots \cr
\\
\cr
\sum \sin\omega_7 t_i & \sum \sin\omega_1 t_i \sin\omega_7 t_i & \sum \sin\omega_2 t_i \sin\omega_7 t_i
\sum \sin\omega_7 t_i & \sum \sin\omega_1 t_i \sin\omega_7 t_i & \sum \sin\omega_2 t_i \sin\omega_7 t_i
& \cdots & \sum \cos\omega_1 t_i \sin\omega_7 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \sin\omega_7 t_i & \cdots \cr
\\
\cr
\sum \sin\omega_1 t_i & \sum \sin\omega_1 t_i \cos\omega_1 t_i & \sum \sin\omega_2 t_i \cos\omega_1 t_i
\sum \sin\omega_1 t_i & \sum \sin\omega_1 t_i \cos\omega_1 t_i & \sum \sin\omega_2 t_i \cos\omega_1 t_i
& \cdots & \sum \cos^2 \omega_1 t_i & \cdots \\
& \cdots & \sum \cos^2 \omega_1 t_i & \cdots \cr
\\
\cr
\sum \cos\omega_2 t_i & \sum \sin\omega_1 t_i \cos\omega_2 t_i & \sum \sin\omega_2 t_i \cos\omega_2 t_i
\sum \cos\omega_2 t_i & \sum \sin\omega_1 t_i \cos\omega_2 t_i & \sum \sin\omega_2 t_i \cos\omega_2 t_i
& \cdots & \sum \cos\omega_1 t_i \cos\omega_2 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \cos\omega_2 t_i & \cdots \cr
\\
\cr
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \cr
\\
\cr
\sum \cos\omega_7 t_i & \sum \sin\omega_1 t_i \cos\omega_7 t_i & \sum \sin\omega_2 t_2 \cos\omega_7 t_i
\sum \cos\omega_7 t_i & \sum \sin\omega_1 t_i \cos\omega_7 t_i & \sum \sin\omega_2 t_2 \cos\omega_7 t_i
& \cdots & \sum \cos\omega_1 t_i \cos\omega_7 t_i & \cdots \\ \\
& \cdots & \sum \cos\omega_1 t_i \cos\omega_7 t_i & \cdots \cr \cr
\end{array} \right] &
} \right] &
\left[ \begin{array} {c}
\left[ \matrix{
\\
\cr
\bar\phi \\ \\ A_1 \\ \\ A_2 \\ \\ \vdots \\ \\ A_7 \\ \\ B_1 \\ \\ B_2 \\ \\ \vdots \\ \\ B_7 \\ \\
\bar\phi \cr \cr A_1 \cr \cr A_2 \cr \cr \vdots \cr \cr A_7 \cr \cr B_1 \cr \cr B_2 \cr \cr \vdots \cr \cr B_7 \cr \cr
\end{array} \right] &
} \right] &
= &
= &
\left[ \begin{array} {l}
\left[ \matrix{
\\
\cr
\sum\phi_i \\ \\
\sum\phi_i \cr \cr
\sum\phi_i \sin\omega_1 ti \\ \\
\sum\phi_i \sin\omega_1 ti \cr \cr
\sum\phi_i \sin\omega_2 ti \\ \\
\sum\phi_i \sin\omega_2 ti \cr \cr
\vdots \\ \\
\vdots \cr \cr
\sum\phi_i \sin\omega_7 ti \\ \\
\sum\phi_i \sin\omega_7 ti \cr \cr
\sum\phi_i \cos\omega_1 ti \\ \\
\sum\phi_i \cos\omega_1 ti \cr \cr
\sum\phi_i \cos\omega_2 ti \\ \\
\sum\phi_i \cos\omega_2 ti \cr \cr
\vdots \\ \\
\vdots \cr \cr
\sum\phi_i \cos\omega_7 ti \\ \\
\sum\phi_i \cos\omega_7 ti \cr \cr
\end{array} \right]
} \right] \cr
\\
A & x & & b}$$
A & x & & b
 
\end{array}</math>
</wikitex>

Revision as of 20:13, 29 September 2008

Least Squares Fit for ROMS Tides

<wikitex>$$\phi(t) = \bar\phi + \sum_{k=1}^N A_k \sin\omega_k t + \sum_{k=1}^N B_k \cos\omega_k t$$

$\phi$: state variables
$\omega_k$: tidal frequency
$A_k, B_k$: amplitude
$N$: number of harmonics

To minimize cost function $\varepsilon^2$

$$\varepsilon^2 = \frac{1}{T} \int_{t_1}^{t_2} \left[\phi - \left(\bar\phi + \sum_{k=1}^N (A_k \sin\omega_k t) + \sum_{k=1}^N (B_k \cos\omega_k t)\right)\right]^2dt$$
$\phi, A_k, B_k$ are unknowns

In discrete space: $$\varepsilon^2 = \frac{1}{M} \sum_{i=1}^M \left[\phi_i - \left(\bar\phi + \sum_{k=1}^N (A_k \sin\omega_k t_i) + \sum_{k=1}^N (B_k \cos\omega_k t_i)\right)\right]^2$$

at the minimum

$$\frac{\partial \varepsilon^2}{\partial \bar\phi} = 0$$


$$\frac{\partial \varepsilon^2}{\partial A_k} = 0\;\;\;\;\;\;k = 1, ..., N$$


$$\frac{\partial \varepsilon^2}{\partial B_k} = 0$$


$$\frac{\partial \varepsilon^2}{\partial \bar\phi} = 0$$


$$\sum_{i=1}^M \left[-2\phi_i + 2\bar\phi + 2 \sum_{k=1}^N (A_k \sin\omega_k t_i) + 2 \sum_{k=1}^N (B_k \sin\omega_k t_i)\right] = 0$$


$$\frac{\partial \varepsilon^2}{\partial A_k} = 0$$ $$\eqalign{\sum_{i=1}^M \Bigg[ &-2 \phi_i \sin\omega_k t_i + 2 \bar\phi \sin\omega_k t_i + 2\sum_{p=1}^N (A_p \sin\omega_p t_i \sin\omega_k t_i) \cr &+ 2\sum_{p=1}^N (B_p\cos\omega_p t_i \sin\omega_k t_i)\Bigg] = 0}$$


$$\frac{\partial \varepsilon^2}{\partial B_k} = 0$$ $$\eqalign{\sum_{i=1}^M \Bigg[ &-2 \phi_i \cos\omega_k t_i + 2 \bar\phi \cos\omega_k t_i + 2\sum_{p=1}^N (A_p \sin\omega_p t_i \cos\omega_k t_i) \cr &+ 2\sum_{p=1}^N (B_p\cos\omega_p t_i \cos\omega_k t_i) \Bigg] = 0}$$


in matrix form (N harmonics). Note: all instances of $\sum$ are actually $\sum_{i=1}^M$ where M is the number of time-steps in the time-averaging window.

$$\matrix{\left[ \matrix{ \cr M & \sum \sin\omega_1 t_i & \sum \sin\omega_2 t_i & \cdots & \sum \cos\omega_1 t_i & \cdots \cr \cr \sum \sin\omega_1 t_i & \sum \sin^2 \omega_1 t_i & \sum \sin\omega_2 t_i \sin\omega_1 t_i & \cdots & \sum \cos\omega_1 t_i \sin\omega_1 t_i & \cdots \cr \cr \sum \sin\omega_2 t_i & \sum \sin\omega_1 t_i \sin\omega_2 t_i & \sum \sin^2 \omega_2 t_i & \cdots & \sum \cos\omega_1 t_i \sin\omega_2 t_i & \cdots \cr \cr \vdots & \vdots & \cdots & \cdots & \cdots & \cdots \cr \cr \sum \sin\omega_7 t_i & \sum \sin\omega_1 t_i \sin\omega_7 t_i & \sum \sin\omega_2 t_i \sin\omega_7 t_i & \cdots & \sum \cos\omega_1 t_i \sin\omega_7 t_i & \cdots \cr \cr \sum \sin\omega_1 t_i & \sum \sin\omega_1 t_i \cos\omega_1 t_i & \sum \sin\omega_2 t_i \cos\omega_1 t_i & \cdots & \sum \cos^2 \omega_1 t_i & \cdots \cr \cr \sum \cos\omega_2 t_i & \sum \sin\omega_1 t_i \cos\omega_2 t_i & \sum \sin\omega_2 t_i \cos\omega_2 t_i & \cdots & \sum \cos\omega_1 t_i \cos\omega_2 t_i & \cdots \cr \cr \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \cr \cr \sum \cos\omega_7 t_i & \sum \sin\omega_1 t_i \cos\omega_7 t_i & \sum \sin\omega_2 t_2 \cos\omega_7 t_i & \cdots & \sum \cos\omega_1 t_i \cos\omega_7 t_i & \cdots \cr \cr } \right] & \left[ \matrix{ \cr \bar\phi \cr \cr A_1 \cr \cr A_2 \cr \cr \vdots \cr \cr A_7 \cr \cr B_1 \cr \cr B_2 \cr \cr \vdots \cr \cr B_7 \cr \cr } \right] & = & \left[ \matrix{ \cr \sum\phi_i \cr \cr \sum\phi_i \sin\omega_1 ti \cr \cr \sum\phi_i \sin\omega_2 ti \cr \cr \vdots \cr \cr \sum\phi_i \sin\omega_7 ti \cr \cr \sum\phi_i \cos\omega_1 ti \cr \cr \sum\phi_i \cos\omega_2 ti \cr \cr \vdots \cr \cr \sum\phi_i \cos\omega_7 ti \cr \cr } \right] \cr A & x & & b}$$

</wikitex>