Difference between revisions of "Terrain-Following Coordinate Transformation"

From WikiROMS
Jump to navigationJump to search
(<wikitex> should only be used INSIDE sections so that the table of contents and section editing will work)   (change visibility)
(added vertical mixing term from Haidvogel et al.)   (change visibility)
Line 35: Line 35:
carats:
carats:


$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + {\cal F}_u + {\cal D}_u$$
$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial s} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial s} \right] + {\cal F}_u + {\cal D}_u$$


$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + {\cal F}_v + {\cal D}_v$$
$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial s} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial s} \right] + {\cal F}_v + {\cal D}_v$$


$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = {\cal F}_{T} + {\cal D}_{T}$$
$$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial s} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial s} \right] + {\cal F}_{C} + {\cal D}_{C}$$
 
$$\frac{\partial S}{\partial t} + \vec{v} \cdot \nabla S = {\cal F}_{S} + {\cal D}_{S}$$


$$\rho = \rho(T,S,P)$$
$$\rho = \rho(T,S,P)$$
Line 71: Line 69:
::$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_s (x,y,t)$
::$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_s (x,y,t)$
::$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_s(x,y,t)$
::$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_s(x,y,t)$
::$\left(\frac{K_T}{H_z}\right) \frac{\partial T}{\partial s} = {Q_T \over \rho_o c_P}  + {1 \over \rho_o c_P} {dQ \over dT} (T - T_{\rm ref})$
::$\left(\frac{K_C}{H_z}\right) \frac{\partial C}{\partial s} = {Q_C \over \rho_o c_P}$
::$\left(\frac{K_S}{H_z}\right) \frac{\partial S}{\partial s} = {(E - P) S \over \rho_o}$
::$\Omega = 0$
::$\Omega = 0$


Line 78: Line 75:
::$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_b (x,y,t)$
::$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_b (x,y,t)$
::$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_b (x,y,t)$
::$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_b (x,y,t)$
::$\left(\frac{K_T}{H_z}\right) \frac{\partial T}{\partial s} = 0<$
::$\left(\frac{K_C}{H_z}\right) \frac{\partial C}{\partial s} = 0$
::$\left(\frac{K_S}{H_z}\right) \frac{\partial S}{\partial s} = 0$
::$\Omega = 0$
::$\Omega = 0$



Revision as of 00:58, 22 July 2008

Vertical Terrain-Following Coordinates

<wikitex>From the point of view of the computational model, it is highly convenient to introduce a stretched vertical coordinate system which essentially "flattens out" the variable bottom at $z = -h(x,y)$. Such "$s$" coordinate systems have long been used, with slight appropriate modification, in both meteorology and oceanography [e.g., Phillips (1957) and Freeman et al. (1972)]. To proceed, we make the coordinate transformation:

$$\hat{x} = x$$ $$\hat{y} = y $$ $$s = s(x,y,z)$$ $$z = z(x,y,s)$$ $$\hat{t} = t$$

See S-coordinate for the form of $s$ used here. In the stretched system, the vertical coordinate $s$ spans the range $-1 \leq s \leq 0$; we are therefore left with level upper ($s = 0$) and lower ($s = -1$) bounding surfaces. The chain rules for this transformation are:

$$\left( { \partial \over \partial x } \right)_z =\left( { \partial \over \partial x } \right)_s - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_s { \partial \over \partial s}$$

$$\left( { \partial \over \partial y } \right)_z = \left( { \partial \over \partial y } \right)_s - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_s { \partial \over \partial s}$$

$${ \partial \over \partial z } = \left( { \partial s \over \partial z } \right) { \partial \over \partial s} = { 1 \over H_z } { \partial \over \partial s }$$

where

$$H_z \equiv { \partial z \over \partial s }$$

As a trade-off for this geometric simplification, the dynamic equations become somewhat more complicated. The resulting dynamic equations are, after dropping the carats:

$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial s} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial s} \right] + {\cal F}_u + {\cal D}_u$$

$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial s} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial s} \right] + {\cal F}_v + {\cal D}_v$$

$$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial s} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial s} \right] + {\cal F}_{C} + {\cal D}_{C}$$

$$\rho = \rho(T,S,P)$$

$$\frac{\partial \phi}{\partial s} = \left( \frac{-gH_z\rho} {\rho_o} \right)$$

$${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial s} = 0$$ where

$$\vec{v} = (u,v,\Omega)$$

$$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v

 \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial s}$$

The vertical velocity in $s$ coordinates is

$$\Omega (x,y,s,t) = {1 \over H_z} \left[ w - (1+s) {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right]$$

and

$$w = {\partial z \over \partial t} + u {\partial z \over \partial x}

 + v {\partial z \over \partial y} + \Omega H_z$$

</wikitex>

Vertical Boundary Conditions

<wikitex>In the stretched coordinate system, the vertical boundary conditions become:

top ($s = 0$):

$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_s (x,y,t)$
$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_s(x,y,t)$
$\left(\frac{K_C}{H_z}\right) \frac{\partial C}{\partial s} = {Q_C \over \rho_o c_P}$
$\Omega = 0$

and bottom ($s = -1$):

$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_b (x,y,t)$
$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_b (x,y,t)$
$\left(\frac{K_C}{H_z}\right) \frac{\partial C}{\partial s} = 0$
$\Omega = 0$

Note the simplification of the boundary conditions on vertical velocity that arises from the $s$ coordinate transformation. </wikitex>