Difference between revisions of "LSF Tides"

From WikiROMS
Jump to navigationJump to search
(New page: <div class="title">Least Squares Fit for ROMS Tides</div> <math>\phi(t) = \bar\phi + \sum_{k=1}^N A_k \sin\omega_k t + \sum_{k=1}^N B_k \cos\omega_k t</math> :<math>\,\!\phi</math>: state...)   (change visibility)
 
Line 35: Line 35:




in matrix form (7 harmonics). '''Note:''' all instances of <math>\sum</math> are actually <math>\sum_{i=1}^M</math>
in matrix form (N harmonics). '''Note:''' all instances of <math>\sum</math> are actually <math>\sum_{i=1}^M</math> where M is the number of time-steps in the time-averaging window.


:<math>\begin{array}{cccc}
:<math>\begin{array}{cccc}
\left[ \begin{array} {cccccc}
\left[ \begin{array} {cccccc}
\\
\\
M & {\color{Blue}\sum \sin\omega_1 t_i} & {\color{Blue}\sum \sin\omega_2 t_i}
M & \sum \sin\omega_1 t_i & \sum \sin\omega_2 t_i
& \cdots & \sum \cos\omega_1 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i & \cdots \\
\\
\\
{\color{Blue}\sum \sin\omega_1 t_i} & {\color{Blue}\sum \sin^2 \omega_1 t_i} & \sum \sin\omega_2 t_i \sin\omega_1 t_i
\sum \sin\omega_1 t_i & \sum \sin^2 \omega_1 t_i & \sum \sin\omega_2 t_i \sin\omega_1 t_i
& \cdots & \sum \cos\omega_1 t_i \sin\omega_1 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \sin\omega_1 t_i & \cdots \\
\\
\\
{\color{Blue}\sum \sin\omega_2 t_i} & {\color{Blue}\sum \sin\omega_1 t_i \sin\omega_2 t_i} & {\color{Blue}\sum \sin^2 \omega_2 t_i}
\sum \sin\omega_2 t_i & \sum \sin\omega_1 t_i \sin\omega_2 t_i & \sum \sin^2 \omega_2 t_i
& \cdots & \sum \cos\omega_1 t_i \sin\omega_2 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \sin\omega_2 t_i & \cdots \\
\\
\\
{\color{Blue}\vdots} & {\color{Blue}\vdots} & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\
\\
\\
{\color{Blue}\sum \sin\omega_7 t_i} & {\color{Blue}\sum \sin\omega_1 t_i \sin\omega_7 t_i} & {\color{Blue}\sum \sin\omega_2 t_i \sin\omega_7 t_i}
\sum \sin\omega_7 t_i & \sum \sin\omega_1 t_i \sin\omega_7 t_i & \sum \sin\omega_2 t_i \sin\omega_7 t_i
& \cdots & \sum \cos\omega_1 t_i \sin\omega_7 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \sin\omega_7 t_i & \cdots \\
\\
\\
{\color{Blue}\sum \sin\omega_1 t_i} & {\color{Blue}\sum \sin\omega_1 t_i \cos\omega_1 t_i} & {\color{Blue}\sum \sin\omega_2 t_i \cos\omega_1 t_i}
\sum \sin\omega_1 t_i & \sum \sin\omega_1 t_i \cos\omega_1 t_i & \sum \sin\omega_2 t_i \cos\omega_1 t_i
& \cdots & \sum \cos^2 \omega_1 t_i & \cdots \\
& \cdots & \sum \cos^2 \omega_1 t_i & \cdots \\
\\
\\
{\color{Blue}\sum \cos\omega_2 t_i} & {\color{Blue}\sum \sin\omega_1 t_i \cos\omega_2 t_i} & {\color{Blue}\sum} \sin\omega_2 t_i \cos\omega_2 t_i
\sum \cos\omega_2 t_i & \sum \sin\omega_1 t_i \cos\omega_2 t_i & \sum \sin\omega_2 t_i \cos\omega_2 t_i
& \cdots & \sum \cos\omega_1 t_i \cos\omega_2 t_i & \cdots \\
& \cdots & \sum \cos\omega_1 t_i \cos\omega_2 t_i & \cdots \\
\\
\\
{\color{Blue}\vdots} & {\color{Blue}\vdots} & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\\
\\
{\color{Blue}\sum \cos\omega_7 t_i} & {\color{Blue}\sum \sin\omega_1 t_i \cos\omega_7 t_i} & \sum \sin\omega_2 t_2 \cos\omega_7 t_i
\sum \cos\omega_7 t_i & \sum \sin\omega_1 t_i \cos\omega_7 t_i & \sum \sin\omega_2 t_2 \cos\omega_7 t_i
& \cdots & \sum \cos\omega_1 t_i \cos\omega_7 t_i & \cdots \\ \\
& \cdots & \sum \cos\omega_1 t_i \cos\omega_7 t_i & \cdots \\ \\
\end{array} \right] &
\end{array} \right] &

Revision as of 20:36, 28 January 2008

Least Squares Fit for ROMS Tides

: state variables
: tidal frequency
: amplitude
: number of harmonics

To minimize cost function

are unknowns

In discrete space:

at the minimum





in matrix form (N harmonics). Note: all instances of are actually where M is the number of time-steps in the time-averaging window.