Difference between revisions of "Equations of Motion"

From WikiROMS
Jump to navigationJump to search
(try math)   (change visibility)
 
m (doesn't like \cal :P)   (change visibility)
Line 1: Line 1:
The primitive equations in Cartesian coordinates can be written:
The primitive equations in Cartesian coordinates can be written:


<math>
<math>\frac{\partial u}{\partial t} + \vec{v} \cdot \nabla u - fv = - \frac{\partial \phi}{\partial x} + {F}_u + {D}_u</math>
  \frac {\partial u}{\partial t} + \vec{v} \cdot \nabla u - fv = - \frac {\partial \phi}{\partial x} + {\cal F}_u + {\cal D}_u


  \frac {\partial v}{\partial t} + \vec{v} \cdot \nabla v + fu = - \frac {\partial \phi}{\partial y} + {\cal F}_v + {\cal D}_v
<math>\frac{\partial v}{\partial t} + \vec{v} \cdot \nabla v + fu = - \frac{\partial \phi}{\partial y} + {F}_v + {D}_v</math>


  \frac {\partial T}{\partial t} + \vec{v} \cdot \nabla T ={\cal F}_T + {\cal D}_T
<math>\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T ={F}_T + {D}_T</math>


  \frac {\partial S}{\partial t} + \vec{v} \cdot \nabla S ={\cal F}_S + {\cal D}_S
<math>\frac{\partial S}{\partial t} + \vec{v} \cdot \nabla S ={F}_S + {D}_S</math>


  \rho = \rho(T,S,P)
<math>\rho = \rho(T,S,P)</math>


  \frac{\partial \phi}{\partial z} = \frac{-\rho g}{\rho_o}
<math>\frac{\partial \phi}{\partial z} = \frac{-\rho g}{\rho_o}</math>


  \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.
<math>\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0</math>
</math>

Revision as of 00:32, 4 November 2006

The primitive equations in Cartesian coordinates can be written: