| 1 | SUBROUTINE biology (ng,tile)
|
|---|
| 2 | !
|
|---|
| 3 | !svn $Id$
|
|---|
| 4 | !***********************************************************************
|
|---|
| 5 | ! Copyright (c) 2002-2015 The ROMS/TOMS Group !
|
|---|
| 6 | ! Licensed under a MIT/X style license Hernan G. Arango !
|
|---|
| 7 | ! See License_ROMS.txt Katja Fennel !
|
|---|
| 8 | !****************************************** Alexander F. Shchepetkin ***
|
|---|
| 9 | ! !
|
|---|
| 10 | ! This routine computes the biological sources and sinks for the !
|
|---|
| 11 | ! Fennel et at. (2006) ecosystem model. Then, it adds those terms !
|
|---|
| 12 | ! to the global biological fields. !
|
|---|
| 13 | ! !
|
|---|
| 14 | ! This model is loosely based on the model by Fasham et al. (1990) !
|
|---|
| 15 | ! but it differs in many respects. The detailed equations of the !
|
|---|
| 16 | ! nitrogen cycling component are given in Fennel et al. (2006). !
|
|---|
| 17 | ! Nitrogen is the fundamental elemental currency in this model. !
|
|---|
| 18 | ! This model was adapted from a code written originally by John !
|
|---|
| 19 | ! Moisan and Emanule DiLorenzo. !
|
|---|
| 20 | ! !
|
|---|
| 21 | ! It is recommended to activate always the "BIO_SEDIMENT" option !
|
|---|
| 22 | ! to ensure conservation of mass by converting the organic matter !
|
|---|
| 23 | ! that is sinking out of the bottom most grid cell into inorganic !
|
|---|
| 24 | ! nutrients (i.e., instantanaous remineralization at the water- !
|
|---|
| 25 | ! sediment interface). Additionally, the "DENITRIFICATION" option !
|
|---|
| 26 | ! can be activated. Hence, a fraction of the instantenous bottom !
|
|---|
| 27 | ! remineralization is assumed to occur through the anearobic !
|
|---|
| 28 | ! (denitrification) pathway and thus lost from the pool of !
|
|---|
| 29 | ! biologically availalbe fixed nitrogen. See Fennel et al. (2006) !
|
|---|
| 30 | ! for details. !
|
|---|
| 31 | ! !
|
|---|
| 32 | ! Additional options can be activated to enable simulation of !
|
|---|
| 33 | ! inorganic carbon and dissolved oxygen. Accounting of inorganic !
|
|---|
| 34 | ! carbon is activated by the "CARBON" option, and results in two !
|
|---|
| 35 | ! additional biological tracer variables: DIC and alkalinity. !
|
|---|
| 36 | ! See Fennel et al. (2008) for details. !
|
|---|
| 37 | ! !
|
|---|
| 38 | ! If the "pCO2_RZ" options is activated, in addition to "CARBON", !
|
|---|
| 39 | ! the carbonate system routines by Zeebe and Wolf-Gladrow (2001) !
|
|---|
| 40 | ! are used, while the OCMIP standard routines are the default. !
|
|---|
| 41 | ! There are two different ways of treating alkalinity. It can be !
|
|---|
| 42 | ! treated diagnostically (default), in this case alkalinity acts !
|
|---|
| 43 | ! like a passive tracer that is not affected by changes in the !
|
|---|
| 44 | ! concentration of nitrate or ammonium. However, if the option !
|
|---|
| 45 | ! "TALK_NONCONSERV" is used, the alkalinity will be affected by !
|
|---|
| 46 | ! sources and sinks in nitrate. See Fennel et al. (2008) for more !
|
|---|
| 47 | ! details. !
|
|---|
| 48 | ! !
|
|---|
| 49 | ! If the "OXYGEN" option is activated, one additional biological !
|
|---|
| 50 | ! tracer variable for dissolved oxygen. "OXYGEN" can be activated !
|
|---|
| 51 | ! independently of the "CARBON" option. If "OCMIP_OXYGEN_SC" is !
|
|---|
| 52 | ! used, in addition to "OXYGEN", the Schmidt number of oxygen in !
|
|---|
| 53 | ! seawater will be computed using the formulation proposed by !
|
|---|
| 54 | ! Keeling et al. (1998, Global Biogeochem. Cycles, 12, 141-163). !
|
|---|
| 55 | ! Otherwise, the Wanninkhof's (1992) formula will be used. !
|
|---|
| 56 | ! !
|
|---|
| 57 | ! References: !
|
|---|
| 58 | ! !
|
|---|
| 59 | ! Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., !
|
|---|
| 60 | ! Haidvogel, D., 2006: Nitrogen cycling in the Mid Atlantic !
|
|---|
| 61 | ! Bight and implications for the North Atlantic nitrogen !
|
|---|
| 62 | ! budget: Results from a three-dimensional model. Global !
|
|---|
| 63 | ! Biogeochemical Cycles 20, GB3007, doi:10.1029/2005GB002456. !
|
|---|
| 64 | ! !
|
|---|
| 65 | ! Fennel, K., Wilkin, J., Previdi, M., Najjar, R. 2008: !
|
|---|
| 66 | ! Denitrification effects on air-sea CO2 flux in the coastal !
|
|---|
| 67 | ! ocean: Simulations for the Northwest North Atlantic. !
|
|---|
| 68 | ! Geophys. Res. Letters 35, L24608, doi:10.1029/2008GL036147. !
|
|---|
| 69 | ! !
|
|---|
| 70 | !***********************************************************************
|
|---|
| 71 | !
|
|---|
| 72 | USE mod_param
|
|---|
| 73 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 74 | USE mod_diags
|
|---|
| 75 | #endif
|
|---|
| 76 | USE mod_forces
|
|---|
| 77 | USE mod_grid
|
|---|
| 78 | USE mod_ncparam
|
|---|
| 79 | USE mod_ocean
|
|---|
| 80 | USE mod_stepping
|
|---|
| 81 | !
|
|---|
| 82 | implicit none
|
|---|
| 83 | !
|
|---|
| 84 | ! Imported variable declarations.
|
|---|
| 85 | !
|
|---|
| 86 | integer, intent(in) :: ng, tile
|
|---|
| 87 | !
|
|---|
| 88 | ! Local variable declarations.
|
|---|
| 89 | !
|
|---|
| 90 | #include "tile.h"
|
|---|
| 91 | !
|
|---|
| 92 | ! Set header file name.
|
|---|
| 93 | !
|
|---|
| 94 | #ifdef DISTRIBUTE
|
|---|
| 95 | IF (Lbiofile(iNLM)) THEN
|
|---|
| 96 | #else
|
|---|
| 97 | IF (Lbiofile(iNLM).and.(tile.eq.0)) THEN
|
|---|
| 98 | #endif
|
|---|
| 99 | Lbiofile(iNLM)=.FALSE.
|
|---|
| 100 | BIONAME(iNLM)=__FILE__
|
|---|
| 101 | END IF
|
|---|
| 102 | !
|
|---|
| 103 | #ifdef PROFILE
|
|---|
| 104 | CALL wclock_on (ng, iNLM, 15)
|
|---|
| 105 | #endif
|
|---|
| 106 | CALL biology_tile (ng, tile, &
|
|---|
| 107 | & LBi, UBi, LBj, UBj, N(ng), NT(ng), &
|
|---|
| 108 | & IminS, ImaxS, JminS, JmaxS, &
|
|---|
| 109 | & nstp(ng), nnew(ng), &
|
|---|
| 110 | #ifdef MASKING
|
|---|
| 111 | & GRID(ng) % rmask, &
|
|---|
| 112 | # if defined WET_DRY && defined DIAGNOSTICS_BIO
|
|---|
| 113 | & GRID(ng) % rmask_full, &
|
|---|
| 114 | # endif
|
|---|
| 115 | #endif
|
|---|
| 116 | & GRID(ng) % Hz, &
|
|---|
| 117 | & GRID(ng) % z_r, &
|
|---|
| 118 | & GRID(ng) % z_w, &
|
|---|
| 119 | & FORCES(ng) % srflx, &
|
|---|
| 120 | #if defined CARBON || defined OXYGEN
|
|---|
| 121 | # ifdef BULK_FLUXES
|
|---|
| 122 | & FORCES(ng) % Uwind, &
|
|---|
| 123 | & FORCES(ng) % Vwind, &
|
|---|
| 124 | # else
|
|---|
| 125 | & FORCES(ng) % sustr, &
|
|---|
| 126 | & FORCES(ng) % svstr, &
|
|---|
| 127 | # endif
|
|---|
| 128 | #endif
|
|---|
| 129 | #ifdef CARBON
|
|---|
| 130 | & OCEAN(ng) % pH, &
|
|---|
| 131 | #endif
|
|---|
| 132 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 133 | & DIAGS(ng) % DiaBio2d, &
|
|---|
| 134 | & DIAGS(ng) % DiaBio3d, &
|
|---|
| 135 | #endif
|
|---|
| 136 | & OCEAN(ng) % t)
|
|---|
| 137 |
|
|---|
| 138 | #ifdef PROFILE
|
|---|
| 139 | CALL wclock_off (ng, iNLM, 15)
|
|---|
| 140 | #endif
|
|---|
| 141 |
|
|---|
| 142 | RETURN
|
|---|
| 143 | END SUBROUTINE biology
|
|---|
| 144 | !
|
|---|
| 145 | !-----------------------------------------------------------------------
|
|---|
| 146 | SUBROUTINE biology_tile (ng, tile, &
|
|---|
| 147 | & LBi, UBi, LBj, UBj, UBk, UBt, &
|
|---|
| 148 | & IminS, ImaxS, JminS, JmaxS, &
|
|---|
| 149 | & nstp, nnew, &
|
|---|
| 150 | #ifdef MASKING
|
|---|
| 151 | & rmask, &
|
|---|
| 152 | # if defined WET_DRY && defined DIAGNOSTICS_BIO
|
|---|
| 153 | & rmask_full, &
|
|---|
| 154 | # endif
|
|---|
| 155 | #endif
|
|---|
| 156 | & Hz, z_r, z_w, srflx, &
|
|---|
| 157 | #if defined CARBON || defined OXYGEN
|
|---|
| 158 | # ifdef BULK_FLUXES
|
|---|
| 159 | & Uwind, Vwind, &
|
|---|
| 160 | # else
|
|---|
| 161 | & sustr, svstr, &
|
|---|
| 162 | # endif
|
|---|
| 163 | #endif
|
|---|
| 164 | #ifdef CARBON
|
|---|
| 165 | & pH, &
|
|---|
| 166 | #endif
|
|---|
| 167 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 168 | & DiaBio2d, DiaBio3d, &
|
|---|
| 169 | #endif
|
|---|
| 170 | & t)
|
|---|
| 171 | !-----------------------------------------------------------------------
|
|---|
| 172 | !
|
|---|
| 173 | USE mod_param
|
|---|
| 174 | USE mod_biology
|
|---|
| 175 | USE mod_ncparam
|
|---|
| 176 | USE mod_scalars
|
|---|
| 177 | !
|
|---|
| 178 | ! Imported variable declarations.
|
|---|
| 179 | !
|
|---|
| 180 | integer, intent(in) :: ng, tile
|
|---|
| 181 | integer, intent(in) :: LBi, UBi, LBj, UBj, UBk, UBt
|
|---|
| 182 | integer, intent(in) :: IminS, ImaxS, JminS, JmaxS
|
|---|
| 183 | integer, intent(in) :: nstp, nnew
|
|---|
| 184 |
|
|---|
| 185 | #ifdef ASSUMED_SHAPE
|
|---|
| 186 | # ifdef MASKING
|
|---|
| 187 | real(r8), intent(in) :: rmask(LBi:,LBj:)
|
|---|
| 188 | # if defined WET_DRY && defined DIAGNOSTICS_BIO
|
|---|
| 189 | real(r8), intent(in) :: rmask_full(LBi:,LBj:)
|
|---|
| 190 | # endif
|
|---|
| 191 | # endif
|
|---|
| 192 | real(r8), intent(in) :: Hz(LBi:,LBj:,:)
|
|---|
| 193 | real(r8), intent(in) :: z_r(LBi:,LBj:,:)
|
|---|
| 194 | real(r8), intent(in) :: z_w(LBi:,LBj:,0:)
|
|---|
| 195 | real(r8), intent(in) :: srflx(LBi:,LBj:)
|
|---|
| 196 | # if defined CARBON || defined OXYGEN
|
|---|
| 197 | # ifdef BULK_FLUXES
|
|---|
| 198 | real(r8), intent(in) :: Uwind(LBi:,LBj:)
|
|---|
| 199 | real(r8), intent(in) :: Vwind(LBi:,LBj:)
|
|---|
| 200 | # else
|
|---|
| 201 | real(r8), intent(in) :: sustr(LBi:,LBj:)
|
|---|
| 202 | real(r8), intent(in) :: svstr(LBi:,LBj:)
|
|---|
| 203 | # endif
|
|---|
| 204 | # endif
|
|---|
| 205 | # ifdef CARBON
|
|---|
| 206 | real(r8), intent(inout) :: pH(LBi:,LBj:)
|
|---|
| 207 | # endif
|
|---|
| 208 | # ifdef DIAGNOSTICS_BIO
|
|---|
| 209 | real(r8), intent(inout) :: DiaBio2d(LBi:,LBj:,:)
|
|---|
| 210 | real(r8), intent(inout) :: DiaBio3d(LBi:,LBj:,:,:)
|
|---|
| 211 | # endif
|
|---|
| 212 | real(r8), intent(inout) :: t(LBi:,LBj:,:,:,:)
|
|---|
| 213 | #else
|
|---|
| 214 | # ifdef MASKING
|
|---|
| 215 | real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj)
|
|---|
| 216 | # if defined WET_DRY && defined DIAGNOSTICS_BIO
|
|---|
| 217 | real(r8), intent(in) :: rmask_full(LBi:UBi,LBj:UBj)
|
|---|
| 218 | # endif
|
|---|
| 219 | # endif
|
|---|
| 220 | real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,UBk)
|
|---|
| 221 | real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,UBk)
|
|---|
| 222 | real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:UBk)
|
|---|
| 223 | real(r8), intent(in) :: srflx(LBi:UBi,LBj:UBj)
|
|---|
| 224 | # if defined CARBON || defined OXYGEN
|
|---|
| 225 | # ifdef BULK_FLUXES
|
|---|
| 226 | real(r8), intent(in) :: Uwind(LBi:UBi,LBj:UBj)
|
|---|
| 227 | real(r8), intent(in) :: Vwind(LBi:UBi,LBj:UBj)
|
|---|
| 228 | # else
|
|---|
| 229 | real(r8), intent(in) :: sustr(LBi:UBi,LBj:UBj)
|
|---|
| 230 | real(r8), intent(in) :: svstr(LBi:UBi,LBj:UBj)
|
|---|
| 231 | # endif
|
|---|
| 232 | # endif
|
|---|
| 233 | # ifdef CARBON
|
|---|
| 234 | real(r8), intent(inout) :: pH(LBi:UBi,LBj:UBj)
|
|---|
| 235 | # endif
|
|---|
| 236 | # ifdef DIAGNOSTICS_BIO
|
|---|
| 237 | real(r8), intent(inout) :: DiaBio2d(LBi:UBi,LBj:UBj,NDbio2d)
|
|---|
| 238 | real(r8), intent(inout) :: DiaBio3d(LBi:UBi,LBj:UBj,UBk,NDbio3d)
|
|---|
| 239 | # endif
|
|---|
| 240 | real(r8), intent(inout) :: t(LBi:UBi,LBj:UBj,UBk,3,UBt)
|
|---|
| 241 | #endif
|
|---|
| 242 | !
|
|---|
| 243 | ! Local variable declarations.
|
|---|
| 244 | !
|
|---|
| 245 | #if defined CARBON || defined OXYGEN
|
|---|
| 246 | real(r8) :: u10squ
|
|---|
| 247 | #endif
|
|---|
| 248 | #ifdef CARBON
|
|---|
| 249 | integer, parameter :: Nsink = 6
|
|---|
| 250 | #else
|
|---|
| 251 | integer, parameter :: Nsink = 4
|
|---|
| 252 | #endif
|
|---|
| 253 |
|
|---|
| 254 | integer :: Iter, i, ibio, isink, itrc, ivar, j, k, ks
|
|---|
| 255 |
|
|---|
| 256 | integer, dimension(Nsink) :: idsink
|
|---|
| 257 |
|
|---|
| 258 | real(r8), parameter :: eps = 1.0e-20_r8
|
|---|
| 259 |
|
|---|
| 260 | #ifdef OXYGEN
|
|---|
| 261 | real(r8), parameter :: OA0 = 2.00907_r8 ! Oxygen
|
|---|
| 262 | real(r8), parameter :: OA1 = 3.22014_r8 ! saturation
|
|---|
| 263 | real(r8), parameter :: OA2 = 4.05010_r8 ! coefficients
|
|---|
| 264 | real(r8), parameter :: OA3 = 4.94457_r8
|
|---|
| 265 | real(r8), parameter :: OA4 =-0.256847_r8
|
|---|
| 266 | real(r8), parameter :: OA5 = 3.88767_r8
|
|---|
| 267 | real(r8), parameter :: OB0 =-0.00624523_r8
|
|---|
| 268 | real(r8), parameter :: OB1 =-0.00737614_r8
|
|---|
| 269 | real(r8), parameter :: OB2 =-0.0103410_r8
|
|---|
| 270 | real(r8), parameter :: OB3 =-0.00817083_r8
|
|---|
| 271 | real(r8), parameter :: OC0 =-0.000000488682_r8
|
|---|
| 272 | real(r8), parameter :: rOxNO3= 8.625_r8 ! 138/16
|
|---|
| 273 | real(r8), parameter :: rOxNH4= 6.625_r8 ! 106/16
|
|---|
| 274 | real(r8) :: l2mol = 1000.0_r8/22.3916_r8 ! liter to mol
|
|---|
| 275 | #endif
|
|---|
| 276 | #ifdef CARBON
|
|---|
| 277 | integer :: iday, month, year
|
|---|
| 278 |
|
|---|
| 279 | integer, parameter :: DoNewton = 0 ! pCO2 solver
|
|---|
| 280 |
|
|---|
| 281 | real(r8), parameter :: Acoef = 2073.1_r8 ! Schmidt
|
|---|
| 282 | real(r8), parameter :: Bcoef = 125.62_r8 ! number
|
|---|
| 283 | real(r8), parameter :: Ccoef = 3.6276_r8 ! transfer
|
|---|
| 284 | real(r8), parameter :: Dcoef = 0.043219_r8 ! coefficients
|
|---|
| 285 |
|
|---|
| 286 | real(r8), parameter :: A1 = -60.2409_r8 ! surface
|
|---|
| 287 | real(r8), parameter :: A2 = 93.4517_r8 ! CO2
|
|---|
| 288 | real(r8), parameter :: A3 = 23.3585_r8 ! solubility
|
|---|
| 289 | real(r8), parameter :: B1 = 0.023517_r8 ! coefficients
|
|---|
| 290 | real(r8), parameter :: B2 = -0.023656_r8
|
|---|
| 291 | real(r8), parameter :: B3 = 0.0047036_r8
|
|---|
| 292 |
|
|---|
| 293 | real(r8) :: pmonth ! months since Jan 1951
|
|---|
| 294 | real(r8) :: pCO2air_secular
|
|---|
| 295 | real(r8) :: yday, hour
|
|---|
| 296 |
|
|---|
| 297 | real(r8), parameter :: pi2 = 6.2831853071796_r8
|
|---|
| 298 |
|
|---|
| 299 | real(r8), parameter :: D0 = 282.6_r8 ! coefficients
|
|---|
| 300 | real(r8), parameter :: D1 = 0.125_r8 ! to calculate
|
|---|
| 301 | real(r8), parameter :: D2 =-7.18_r8 ! secular trend in
|
|---|
| 302 | real(r8), parameter :: D3 = 0.86_r8 ! atmospheric pCO2
|
|---|
| 303 | real(r8), parameter :: D4 =-0.99_r8
|
|---|
| 304 | real(r8), parameter :: D5 = 0.28_r8
|
|---|
| 305 | real(r8), parameter :: D6 =-0.80_r8
|
|---|
| 306 | real(r8), parameter :: D7 = 0.06_r8
|
|---|
| 307 | #endif
|
|---|
| 308 |
|
|---|
| 309 | real(r8) :: Att, AttFac, ExpAtt, Itop, PAR
|
|---|
| 310 | real(r8) :: Epp, L_NH4, L_NO3, LTOT, Vp
|
|---|
| 311 | real(r8) :: Chl2C, dtdays, t_PPmax, inhNH4
|
|---|
| 312 |
|
|---|
| 313 | real(r8) :: cff, cff1, cff2, cff3, cff4, cff5
|
|---|
| 314 | real(r8) :: fac1, fac2, fac3
|
|---|
| 315 | real(r8) :: cffL, cffR, cu, dltL, dltR
|
|---|
| 316 |
|
|---|
| 317 | real(r8) :: total_N
|
|---|
| 318 |
|
|---|
| 319 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 320 | real(r8) :: fiter
|
|---|
| 321 | #endif
|
|---|
| 322 |
|
|---|
| 323 | #ifdef OXYGEN
|
|---|
| 324 | real(r8) :: SchmidtN_Ox, O2satu, O2_Flux
|
|---|
| 325 | real(r8) :: TS, AA
|
|---|
| 326 | #endif
|
|---|
| 327 |
|
|---|
| 328 | #ifdef CARBON
|
|---|
| 329 | real(r8) :: C_Flux_Remine
|
|---|
| 330 | real(r8) :: CO2_Flux, CO2_sol, SchmidtN, TempK
|
|---|
| 331 | #endif
|
|---|
| 332 |
|
|---|
| 333 | real(r8) :: N_Flux_Assim
|
|---|
| 334 | real(r8) :: N_Flux_CoagD, N_Flux_CoagP
|
|---|
| 335 | real(r8) :: N_Flux_Egest
|
|---|
| 336 | real(r8) :: N_Flux_NewProd, N_Flux_RegProd
|
|---|
| 337 | real(r8) :: N_Flux_Nitrifi
|
|---|
| 338 | real(r8) :: N_Flux_Pmortal, N_Flux_Zmortal
|
|---|
| 339 | real(r8) :: N_Flux_Remine
|
|---|
| 340 | real(r8) :: N_Flux_Zexcret, N_Flux_Zmetabo
|
|---|
| 341 |
|
|---|
| 342 | real(r8), dimension(Nsink) :: Wbio
|
|---|
| 343 |
|
|---|
| 344 | integer, dimension(IminS:ImaxS,N(ng)) :: ksource
|
|---|
| 345 |
|
|---|
| 346 | real(r8), dimension(IminS:ImaxS) :: PARsur
|
|---|
| 347 | #ifdef CARBON
|
|---|
| 348 | real(r8), dimension(IminS:ImaxS) :: pCO2
|
|---|
| 349 | #endif
|
|---|
| 350 |
|
|---|
| 351 | real(r8), dimension(IminS:ImaxS,N(ng),NT(ng)) :: Bio
|
|---|
| 352 | real(r8), dimension(IminS:ImaxS,N(ng),NT(ng)) :: Bio_old
|
|---|
| 353 |
|
|---|
| 354 | real(r8), dimension(IminS:ImaxS,0:N(ng)) :: FC
|
|---|
| 355 |
|
|---|
| 356 | real(r8), dimension(IminS:ImaxS,N(ng)) :: Hz_inv
|
|---|
| 357 | real(r8), dimension(IminS:ImaxS,N(ng)) :: Hz_inv2
|
|---|
| 358 | real(r8), dimension(IminS:ImaxS,N(ng)) :: Hz_inv3
|
|---|
| 359 | real(r8), dimension(IminS:ImaxS,N(ng)) :: WL
|
|---|
| 360 | real(r8), dimension(IminS:ImaxS,N(ng)) :: WR
|
|---|
| 361 | real(r8), dimension(IminS:ImaxS,N(ng)) :: bL
|
|---|
| 362 | real(r8), dimension(IminS:ImaxS,N(ng)) :: bR
|
|---|
| 363 | real(r8), dimension(IminS:ImaxS,N(ng)) :: qc
|
|---|
| 364 |
|
|---|
| 365 | #include "set_bounds.h"
|
|---|
| 366 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 367 | !
|
|---|
| 368 | !-----------------------------------------------------------------------
|
|---|
| 369 | ! If appropriate, initialize time-averaged diagnostic arrays.
|
|---|
| 370 | !-----------------------------------------------------------------------
|
|---|
| 371 | !
|
|---|
| 372 | IF (((iic(ng).gt.ntsDIA(ng)).and. &
|
|---|
| 373 | & (MOD(iic(ng),nDIA(ng)).eq.1)).or. &
|
|---|
| 374 | & ((iic(ng).ge.ntsDIA(ng)).and.(nDIA(ng).eq.1)).or. &
|
|---|
| 375 | & ((nrrec(ng).gt.0).and.(iic(ng).eq.ntstart(ng)))) THEN
|
|---|
| 376 | DO ivar=1,NDbio2d
|
|---|
| 377 | DO j=Jstr,Jend
|
|---|
| 378 | DO i=Istr,Iend
|
|---|
| 379 | DiaBio2d(i,j,ivar)=0.0_r8
|
|---|
| 380 | END DO
|
|---|
| 381 | END DO
|
|---|
| 382 | END DO
|
|---|
| 383 | DO ivar=1,NDbio3d
|
|---|
| 384 | DO k=1,N(ng)
|
|---|
| 385 | DO j=Jstr,Jend
|
|---|
| 386 | DO i=Istr,Iend
|
|---|
| 387 | DiaBio3d(i,j,k,ivar)=0.0_r8
|
|---|
| 388 | END DO
|
|---|
| 389 | END DO
|
|---|
| 390 | END DO
|
|---|
| 391 | END DO
|
|---|
| 392 | END IF
|
|---|
| 393 | #endif
|
|---|
| 394 | !
|
|---|
| 395 | !-----------------------------------------------------------------------
|
|---|
| 396 | ! Add biological Source/Sink terms.
|
|---|
| 397 | !-----------------------------------------------------------------------
|
|---|
| 398 | !
|
|---|
| 399 | ! Avoid computing source/sink terms if no biological iterations.
|
|---|
| 400 | !
|
|---|
| 401 | IF (BioIter(ng).le.0) RETURN
|
|---|
| 402 | !
|
|---|
| 403 | ! Set time-stepping according to the number of iterations.
|
|---|
| 404 | !
|
|---|
| 405 | dtdays=dt(ng)*sec2day/REAL(BioIter(ng),r8)
|
|---|
| 406 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 407 | !
|
|---|
| 408 | ! A factor to account for the number of iterations in accumulating
|
|---|
| 409 | ! diagnostic rate variables.
|
|---|
| 410 | !
|
|---|
| 411 | fiter=1.0_r8/REAL(BioIter(ng),r8)
|
|---|
| 412 | #endif
|
|---|
| 413 | !
|
|---|
| 414 | ! Set vertical sinking indentification vector.
|
|---|
| 415 | !
|
|---|
| 416 | idsink(1)=iPhyt
|
|---|
| 417 | idsink(2)=iChlo
|
|---|
| 418 | idsink(3)=iSDeN
|
|---|
| 419 | idsink(4)=iLDeN
|
|---|
| 420 | #ifdef CARBON
|
|---|
| 421 | idsink(5)=iSDeC
|
|---|
| 422 | idsink(6)=iLDeC
|
|---|
| 423 | #endif
|
|---|
| 424 | !
|
|---|
| 425 | ! Set vertical sinking velocity vector in the same order as the
|
|---|
| 426 | ! identification vector, IDSINK.
|
|---|
| 427 | !
|
|---|
| 428 | Wbio(1)=wPhy(ng) ! phytoplankton
|
|---|
| 429 | Wbio(2)=wPhy(ng) ! chlorophyll
|
|---|
| 430 | Wbio(3)=wSDet(ng) ! small Nitrogen-detritus
|
|---|
| 431 | Wbio(4)=wLDet(ng) ! large Nitrogen-detritus
|
|---|
| 432 | #ifdef CARBON
|
|---|
| 433 | Wbio(5)=wSDet(ng) ! small Carbon-detritus
|
|---|
| 434 | Wbio(6)=wLDet(ng) ! large Carbon-detritus
|
|---|
| 435 | #endif
|
|---|
| 436 | !
|
|---|
| 437 | ! Compute inverse thickness to avoid repeated divisions.
|
|---|
| 438 | !
|
|---|
| 439 | J_LOOP : DO j=Jstr,Jend
|
|---|
| 440 | DO k=1,N(ng)
|
|---|
| 441 | DO i=Istr,Iend
|
|---|
| 442 | Hz_inv(i,k)=1.0_r8/Hz(i,j,k)
|
|---|
| 443 | END DO
|
|---|
| 444 | END DO
|
|---|
| 445 | DO k=1,N(ng)-1
|
|---|
| 446 | DO i=Istr,Iend
|
|---|
| 447 | Hz_inv2(i,k)=1.0_r8/(Hz(i,j,k)+Hz(i,j,k+1))
|
|---|
| 448 | END DO
|
|---|
| 449 | END DO
|
|---|
| 450 | DO k=2,N(ng)-1
|
|---|
| 451 | DO i=Istr,Iend
|
|---|
| 452 | Hz_inv3(i,k)=1.0_r8/(Hz(i,j,k-1)+Hz(i,j,k)+Hz(i,j,k+1))
|
|---|
| 453 | END DO
|
|---|
| 454 | END DO
|
|---|
| 455 | !
|
|---|
| 456 | ! Extract biological variables from tracer arrays, place them into
|
|---|
| 457 | ! scratch arrays, and restrict their values to be positive definite.
|
|---|
| 458 | ! At input, all tracers (index nnew) from predictor step have
|
|---|
| 459 | ! transport units (m Tunits) since we do not have yet the new
|
|---|
| 460 | ! values for zeta and Hz. These are known after the 2D barotropic
|
|---|
| 461 | ! time-stepping.
|
|---|
| 462 | !
|
|---|
| 463 | DO itrc=1,NBT
|
|---|
| 464 | ibio=idbio(itrc)
|
|---|
| 465 | DO k=1,N(ng)
|
|---|
| 466 | DO i=Istr,Iend
|
|---|
| 467 | Bio_old(i,k,ibio)=MAX(0.0_r8,t(i,j,k,nstp,ibio))
|
|---|
| 468 | Bio(i,k,ibio)=Bio_old(i,k,ibio)
|
|---|
| 469 | END DO
|
|---|
| 470 | END DO
|
|---|
| 471 | END DO
|
|---|
| 472 | #ifdef CARBON
|
|---|
| 473 | DO k=1,N(ng)
|
|---|
| 474 | DO i=Istr,Iend
|
|---|
| 475 | Bio_old(i,k,iTIC_)=MIN(Bio_old(i,k,iTIC_),3000.0_r8)
|
|---|
| 476 | Bio_old(i,k,iTIC_)=MAX(Bio_old(i,k,iTIC_),400.0_r8)
|
|---|
| 477 | Bio(i,k,iTIC_)=Bio_old(i,k,iTIC_)
|
|---|
| 478 | END DO
|
|---|
| 479 | END DO
|
|---|
| 480 | #endif
|
|---|
| 481 | !
|
|---|
| 482 | ! Extract potential temperature and salinity.
|
|---|
| 483 | !
|
|---|
| 484 | DO k=1,N(ng)
|
|---|
| 485 | DO i=Istr,Iend
|
|---|
| 486 | Bio(i,k,itemp)=MIN(t(i,j,k,nstp,itemp),35.0_r8)
|
|---|
| 487 | Bio(i,k,isalt)=MAX(t(i,j,k,nstp,isalt), 0.0_r8)
|
|---|
| 488 | END DO
|
|---|
| 489 | END DO
|
|---|
| 490 | !
|
|---|
| 491 | ! Calculate surface Photosynthetically Available Radiation (PAR). The
|
|---|
| 492 | ! net shortwave radiation is scaled back to Watts/m2 and multiplied by
|
|---|
| 493 | ! the fraction that is photosynthetically available, PARfrac.
|
|---|
| 494 | !
|
|---|
| 495 | DO i=Istr,Iend
|
|---|
| 496 | PARsur(i)=PARfrac(ng)*srflx(i,j)*rho0*Cp
|
|---|
| 497 | END DO
|
|---|
| 498 | !
|
|---|
| 499 | !=======================================================================
|
|---|
| 500 | ! Start internal iterations to achieve convergence of the nonlinear
|
|---|
| 501 | ! backward-implicit solution.
|
|---|
| 502 | !=======================================================================
|
|---|
| 503 | !
|
|---|
| 504 | ! During the iterative procedure a series of fractional time steps are
|
|---|
| 505 | ! performed in a chained mode (splitting by different biological
|
|---|
| 506 | ! conversion processes) in sequence of the main food chain. In all
|
|---|
| 507 | ! stages the concentration of the component being consumed is treated
|
|---|
| 508 | ! in fully implicit manner, so the algorithm guarantees non-negative
|
|---|
| 509 | ! values, no matter how strong s the concentration of active consuming
|
|---|
| 510 | ! component (Phytoplankton or Zooplankton). The overall algorithm,
|
|---|
| 511 | ! as well as any stage of it, is formulated in conservative form
|
|---|
| 512 | ! (except explicit sinking) in sense that the sum of concentration of
|
|---|
| 513 | ! all components is conserved.
|
|---|
| 514 | !
|
|---|
| 515 | !
|
|---|
| 516 | ! In the implicit algorithm, we have for example (N: nitrate,
|
|---|
| 517 | ! P: phytoplankton),
|
|---|
| 518 | !
|
|---|
| 519 | ! N(new) = N(old) - uptake * P(old) uptake = mu * N / (Kn + N)
|
|---|
| 520 | ! {Michaelis-Menten}
|
|---|
| 521 | ! below, we set
|
|---|
| 522 | ! The N in the numerator of
|
|---|
| 523 | ! cff = mu * P(old) / (Kn + N(old)) uptake is treated implicitly
|
|---|
| 524 | ! as N(new)
|
|---|
| 525 | !
|
|---|
| 526 | ! so the time-stepping of the equations becomes:
|
|---|
| 527 | !
|
|---|
| 528 | ! N(new) = N(old) / (1 + cff) (1) when substracting a sink term,
|
|---|
| 529 | ! consuming, divide by (1 + cff)
|
|---|
| 530 | ! and
|
|---|
| 531 | !
|
|---|
| 532 | ! P(new) = P(old) + cff * N(new) (2) when adding a source term,
|
|---|
| 533 | ! growing, add (cff * source)
|
|---|
| 534 | !
|
|---|
| 535 | ! Notice that if you substitute (1) in (2), you will get:
|
|---|
| 536 | !
|
|---|
| 537 | ! P(new) = P(old) + cff * N(old) / (1 + cff) (3)
|
|---|
| 538 | !
|
|---|
| 539 | ! If you add (1) and (3), you get
|
|---|
| 540 | !
|
|---|
| 541 | ! N(new) + P(new) = N(old) + P(old)
|
|---|
| 542 | !
|
|---|
| 543 | ! implying conservation regardless how "cff" is computed. Therefore,
|
|---|
| 544 | ! this scheme is unconditionally stable regardless of the conversion
|
|---|
| 545 | ! rate. It does not generate negative values since the constituent
|
|---|
| 546 | ! to be consumed is always treated implicitly. It is also biased
|
|---|
| 547 | ! toward damping oscillations.
|
|---|
| 548 | !
|
|---|
| 549 | ! The iterative loop below is to iterate toward an universal Backward-
|
|---|
| 550 | ! Euler treatment of all terms. So if there are oscillations in the
|
|---|
| 551 | ! system, they are only physical oscillations. These iterations,
|
|---|
| 552 | ! however, do not improve the accuaracy of the solution.
|
|---|
| 553 | !
|
|---|
| 554 | ITER_LOOP: DO Iter=1,BioIter(ng)
|
|---|
| 555 | !
|
|---|
| 556 | !-----------------------------------------------------------------------
|
|---|
| 557 | ! Light-limited computations.
|
|---|
| 558 | !-----------------------------------------------------------------------
|
|---|
| 559 | !
|
|---|
| 560 | ! Compute attenuation coefficient based on the concentration of
|
|---|
| 561 | ! chlorophyll-a within each grid box. Then, attenuate surface
|
|---|
| 562 | ! photosynthetically available radiation (PARsur) down inot the
|
|---|
| 563 | ! water column. Thus, PAR at certain depth depends on the whole
|
|---|
| 564 | ! distribution of chlorophyll-a above.
|
|---|
| 565 | ! To compute rate of maximum primary productivity (t_PPmax), one needs
|
|---|
| 566 | ! PAR somewhat in the middle of the gridbox, so that attenuation "Att"
|
|---|
| 567 | ! corresponds to half of the grid box height, while PAR is multiplied
|
|---|
| 568 | ! by it twice: once to get it in the middle of grid-box and once the
|
|---|
| 569 | ! compute on the lower grid-box interface.
|
|---|
| 570 | !
|
|---|
| 571 | DO i=Istr,Iend
|
|---|
| 572 | PAR=PARsur(i)
|
|---|
| 573 | AttFac=0.0_r8
|
|---|
| 574 | IF (PARsur(i).gt.0.0_r8) THEN
|
|---|
| 575 | DO k=N(ng),1,-1
|
|---|
| 576 | !
|
|---|
| 577 | ! Compute average light attenuation for each grid cell. To include
|
|---|
| 578 | ! other attenuation contributions like suspended sediment or CDOM
|
|---|
| 579 | ! modify AttFac.
|
|---|
| 580 | !
|
|---|
| 581 | Att=(AttSW(ng)+ &
|
|---|
| 582 | & AttChl(ng)*Bio(i,k,iChlo)+ &
|
|---|
| 583 | & AttFac)* &
|
|---|
| 584 | & (z_w(i,j,k)-z_w(i,j,k-1))
|
|---|
| 585 | ExpAtt=EXP(-Att)
|
|---|
| 586 | Itop=PAR
|
|---|
| 587 | PAR=Itop*(1.0_r8-ExpAtt)/Att ! average at cell center
|
|---|
| 588 | !
|
|---|
| 589 | ! Compute Chlorophyll-a phytoplankton ratio, [mg Chla / (mg C)].
|
|---|
| 590 | !
|
|---|
| 591 | cff=PhyCN(ng)*12.0_r8
|
|---|
| 592 | Chl2C=MIN(Bio(i,k,iChlo)/(Bio(i,k,iPhyt)*cff+eps), &
|
|---|
| 593 | & Chl2C_m(ng))
|
|---|
| 594 | !
|
|---|
| 595 | ! Temperature-limited and light-limited growth rate (Eppley, R.W.,
|
|---|
| 596 | ! 1972, Fishery Bulletin, 70: 1063-1085; here 0.59=ln(2)*0.851).
|
|---|
| 597 | ! Check value for Vp is 2.9124317 at 19.25 degC.
|
|---|
| 598 | !
|
|---|
| 599 | Vp=Vp0(ng)*0.59_r8*(1.066_r8**Bio(i,k,itemp))
|
|---|
| 600 | fac1=PAR*PhyIS(ng)
|
|---|
| 601 | Epp=Vp/SQRT(Vp*Vp+fac1*fac1)
|
|---|
| 602 | t_PPmax=Epp*fac1
|
|---|
| 603 | !
|
|---|
| 604 | ! Nutrient-limitation terms (Parker 1993 Ecol Mod., 66, 113-120).
|
|---|
| 605 | !
|
|---|
| 606 | cff1=Bio(i,k,iNH4_)*K_NH4(ng)
|
|---|
| 607 | cff2=Bio(i,k,iNO3_)*K_NO3(ng)
|
|---|
| 608 | inhNH4=1.0_r8/(1.0_r8+cff1)
|
|---|
| 609 | L_NH4=cff1/(1.0_r8+cff1)
|
|---|
| 610 | L_NO3=cff2*inhNH4/(1.0_r8+cff2)
|
|---|
| 611 | LTOT=L_NO3+L_NH4
|
|---|
| 612 | !
|
|---|
| 613 | ! Nitrate and ammonium uptake by Phytoplankton.
|
|---|
| 614 | !
|
|---|
| 615 | fac1=dtdays*t_PPmax
|
|---|
| 616 | cff4=fac1*K_NO3(ng)*inhNH4/(1.0_r8+cff2)*Bio(i,k,iPhyt)
|
|---|
| 617 | cff5=fac1*K_NH4(ng)/(1.0_r8+cff1)*Bio(i,k,iPhyt)
|
|---|
| 618 | Bio(i,k,iNO3_)=Bio(i,k,iNO3_)/(1.0_r8+cff4)
|
|---|
| 619 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)/(1.0_r8+cff5)
|
|---|
| 620 | N_Flux_NewProd=Bio(i,k,iNO3_)*cff4
|
|---|
| 621 | N_Flux_RegProd=Bio(i,k,iNH4_)*cff5
|
|---|
| 622 | Bio(i,k,iPhyt)=Bio(i,k,iPhyt)+ &
|
|---|
| 623 | & N_Flux_NewProd+N_Flux_RegProd
|
|---|
| 624 | !
|
|---|
| 625 | Bio(i,k,iChlo)=Bio(i,k,iChlo)+ &
|
|---|
| 626 | & (dtdays*t_PPmax*t_PPmax*LTOT*LTOT* &
|
|---|
| 627 | & Chl2C_m(ng)*Bio(i,k,iChlo))/ &
|
|---|
| 628 | & (PhyIS(ng)*MAX(Chl2C,eps)*PAR+eps)
|
|---|
| 629 | #ifdef DIAGNOSTICS_BIO
|
|---|
| 630 | DiaBio3d(i,j,k,iPPro)=DiaBio3d(i,j,k,iPPro)+ &
|
|---|
| 631 | # ifdef WET_DRY
|
|---|
| 632 | & rmask_full(i,j)* &
|
|---|
| 633 | # endif
|
|---|
| 634 | & (N_Flux_NewProd+N_Flux_RegProd)* &
|
|---|
| 635 | & fiter
|
|---|
| 636 | DiaBio3d(i,j,k,iNO3u)=DiaBio3d(i,j,k,iNO3u)+ &
|
|---|
| 637 | # ifdef WET_DRY
|
|---|
| 638 | & rmask_full(i,j)* &
|
|---|
| 639 | # endif
|
|---|
| 640 | & N_Flux_NewProd*fiter
|
|---|
| 641 | #endif
|
|---|
| 642 | #ifdef OXYGEN
|
|---|
| 643 | Bio(i,k,iOxyg)=Bio(i,k,iOxyg)+ &
|
|---|
| 644 | & N_Flux_NewProd*rOxNO3+ &
|
|---|
| 645 | & N_Flux_RegProd*rOxNH4
|
|---|
| 646 | #endif
|
|---|
| 647 | #ifdef CARBON
|
|---|
| 648 | !
|
|---|
| 649 | ! Total inorganic carbon (CO2) uptake during phytoplankton growth.
|
|---|
| 650 | !
|
|---|
| 651 | cff1=PhyCN(ng)*(N_Flux_NewProd+N_Flux_RegProd)
|
|---|
| 652 | Bio(i,k,iTIC_)=Bio(i,k,iTIC_)-cff1
|
|---|
| 653 | # ifdef TALK_NONCONSERV
|
|---|
| 654 | !
|
|---|
| 655 | ! Account for the uptake of NO3 on total alkalinity.
|
|---|
| 656 | !
|
|---|
| 657 | Bio(i,k,iTAlk)=Bio(i,k,iTAlk)+N_Flux_NewProd
|
|---|
| 658 | # endif
|
|---|
| 659 | #endif
|
|---|
| 660 | !
|
|---|
| 661 | ! The Nitrification of NH4 ==> NO3 is thought to occur only in dark and
|
|---|
| 662 | ! only in aerobic water (see Olson, R. J., 1981, JMR: (39), 227-238.).
|
|---|
| 663 | !
|
|---|
| 664 | ! NH4+ + 3/2 O2 ==> NO2- + H2O; via Nitrosomonas bacteria
|
|---|
| 665 | ! NO2- + 1/2 O2 ==> NO3- ; via Nitrobacter bacteria
|
|---|
| 666 | !
|
|---|
| 667 | ! Note that the entire process has a total loss of two moles of O2 per
|
|---|
| 668 | ! mole of NH4. If we were to resolve NO2 profiles, this is where we
|
|---|
| 669 | ! would change the code to split out the differential effects of the
|
|---|
| 670 | ! two different bacteria types. If OXYGEN is defined, nitrification is
|
|---|
| 671 | ! inhibited at low oxygen concentrations using a Michaelis-Menten term.
|
|---|
| 672 | !
|
|---|
| 673 | #ifdef OXYGEN
|
|---|
| 674 | fac2=MAX(Bio(i,k,iOxyg),0.0_r8) ! O2 max
|
|---|
| 675 | fac3=MAX(fac2/(3.0_r8+fac2),0.0_r8) ! MM for O2 dependence
|
|---|
| 676 | fac1=dtdays*NitriR(ng)*fac3
|
|---|
| 677 | #else
|
|---|
| 678 | fac1=dtdays*NitriR(ng)
|
|---|
| 679 | #endif
|
|---|
| 680 | cff1=(PAR-I_thNH4(ng))/ &
|
|---|
| 681 | & (D_p5NH4(ng)+PAR-2.0_r8*I_thNH4(ng))
|
|---|
| 682 | cff2=1.0_r8-MAX(0.0_r8,cff1)
|
|---|
| 683 | cff3=fac1*cff2
|
|---|
| 684 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)/(1.0_r8+cff3)
|
|---|
| 685 | N_Flux_Nitrifi=Bio(i,k,iNH4_)*cff3
|
|---|
| 686 | Bio(i,k,iNO3_)=Bio(i,k,iNO3_)+N_Flux_Nitrifi
|
|---|
| 687 | #ifdef OXYGEN
|
|---|
| 688 | Bio(i,k,iOxyg)=Bio(i,k,iOxyg)-2.0_r8*N_Flux_Nitrifi
|
|---|
| 689 | #endif
|
|---|
| 690 | #if defined CARBON && defined TALK_NONCONSERV
|
|---|
| 691 | Bio(i,k,iTAlk)=Bio(i,k,iTAlk)-N_Flux_Nitrifi
|
|---|
| 692 | #endif
|
|---|
| 693 | !
|
|---|
| 694 | ! Light attenuation at the bottom of the grid cell. It is the starting
|
|---|
| 695 | ! PAR value for the next (deeper) vertical grid cell.
|
|---|
| 696 | !
|
|---|
| 697 | PAR=Itop*ExpAtt
|
|---|
| 698 | END DO
|
|---|
| 699 | !
|
|---|
| 700 | ! If PARsur=0, nitrification occurs at the maximum rate (NitriR).
|
|---|
| 701 | !
|
|---|
| 702 | ELSE
|
|---|
| 703 | cff3=dtdays*NitriR(ng)
|
|---|
| 704 | DO k=N(ng),1,-1
|
|---|
| 705 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)/(1.0_r8+cff3)
|
|---|
| 706 | N_Flux_Nitrifi=Bio(i,k,iNH4_)*cff3
|
|---|
| 707 | Bio(i,k,iNO3_)=Bio(i,k,iNO3_)+N_Flux_Nitrifi
|
|---|
| 708 | #ifdef OXYGEN
|
|---|
| 709 | Bio(i,k,iOxyg)=Bio(i,k,iOxyg)-2.0_r8*N_Flux_Nitrifi
|
|---|
| 710 | #endif
|
|---|
| 711 | #if defined CARBON && defined TALK_NONCONSERV
|
|---|
| 712 | Bio(i,k,iTAlk)=Bio(i,k,iTAlk)-N_Flux_Nitrifi
|
|---|
| 713 | #endif
|
|---|
| 714 | END DO
|
|---|
| 715 | END IF
|
|---|
| 716 | END DO
|
|---|
| 717 | !
|
|---|
| 718 | !-----------------------------------------------------------------------
|
|---|
| 719 | ! Phytoplankton grazing by zooplankton (rate: ZooGR), phytoplankton
|
|---|
| 720 | ! assimilated to zooplankton (fraction: ZooAE_N) and egested to small
|
|---|
| 721 | ! detritus, and phytoplankton mortality (rate: PhyMR) to small
|
|---|
| 722 | ! detritus. [Landry 1993 L&O 38:468-472]
|
|---|
| 723 | !-----------------------------------------------------------------------
|
|---|
| 724 | !
|
|---|
| 725 | fac1=dtdays*ZooGR(ng)
|
|---|
| 726 | cff2=dtdays*PhyMR(ng)
|
|---|
| 727 | DO k=1,N(ng)
|
|---|
| 728 | DO i=Istr,Iend
|
|---|
| 729 | !
|
|---|
| 730 | ! Phytoplankton grazing by zooplankton.
|
|---|
| 731 | !
|
|---|
| 732 | cff1=fac1*Bio(i,k,iZoop)*Bio(i,k,iPhyt)/ &
|
|---|
| 733 | & (K_Phy(ng)+Bio(i,k,iPhyt)*Bio(i,k,iPhyt))
|
|---|
| 734 | cff3=1.0_r8/(1.0_r8+cff1)
|
|---|
| 735 | Bio(i,k,iPhyt)=cff3*Bio(i,k,iPhyt)
|
|---|
| 736 | Bio(i,k,iChlo)=cff3*Bio(i,k,iChlo)
|
|---|
| 737 | !
|
|---|
| 738 | ! Phytoplankton assimilated to zooplankton and egested to small
|
|---|
| 739 | ! detritus.
|
|---|
| 740 | !
|
|---|
| 741 | N_Flux_Assim=cff1*Bio(i,k,iPhyt)*ZooAE_N(ng)
|
|---|
| 742 | N_Flux_Egest=Bio(i,k,iPhyt)*cff1*(1.0_r8-ZooAE_N(ng))
|
|---|
| 743 | Bio(i,k,iZoop)=Bio(i,k,iZoop)+ &
|
|---|
| 744 | & N_Flux_Assim
|
|---|
| 745 | Bio(i,k,iSDeN)=Bio(i,k,iSDeN)+ &
|
|---|
| 746 | & N_Flux_Egest
|
|---|
| 747 | !
|
|---|
| 748 | ! Phytoplankton mortality (limited by a phytoplankton minimum).
|
|---|
| 749 | !
|
|---|
| 750 | N_Flux_Pmortal=cff2*MAX(Bio(i,k,iPhyt)-PhyMin(ng),0.0_r8)
|
|---|
| 751 | Bio(i,k,iPhyt)=Bio(i,k,iPhyt)-N_Flux_Pmortal
|
|---|
| 752 | Bio(i,k,iChlo)=Bio(i,k,iChlo)- &
|
|---|
| 753 | & cff2*MAX(Bio(i,k,iChlo)-ChlMin(ng),0.0_r8)
|
|---|
| 754 | Bio(i,k,iSDeN)=Bio(i,k,iSDeN)+ &
|
|---|
| 755 | & N_Flux_Pmortal
|
|---|
| 756 | #ifdef CARBON
|
|---|
| 757 | Bio(i,k,iSDeC)=Bio(i,k,iSDeC)+ &
|
|---|
| 758 | & PhyCN(ng)*(N_Flux_Egest+N_Flux_Pmortal)+ &
|
|---|
| 759 | & (PhyCN(ng)-ZooCN(ng))*N_Flux_Assim
|
|---|
| 760 | #endif
|
|---|
| 761 | END DO
|
|---|
| 762 | END DO
|
|---|
| 763 | !
|
|---|
| 764 | !-----------------------------------------------------------------------
|
|---|
| 765 | ! Zooplankton basal metabolism to NH4 (rate: ZooBM), zooplankton
|
|---|
| 766 | ! mortality to small detritus (rate: ZooMR), zooplankton ingestion
|
|---|
| 767 | ! related excretion (rate: ZooER).
|
|---|
| 768 | !-----------------------------------------------------------------------
|
|---|
| 769 | !
|
|---|
| 770 | cff1=dtdays*ZooBM(ng)
|
|---|
| 771 | fac2=dtdays*ZooMR(ng)
|
|---|
| 772 | fac3=dtdays*ZooER(ng)
|
|---|
| 773 | DO k=1,N(ng)
|
|---|
| 774 | DO i=Istr,Iend
|
|---|
| 775 | fac1=fac3*Bio(i,k,iPhyt)*Bio(i,k,iPhyt)/ &
|
|---|
| 776 | & (K_Phy(ng)+Bio(i,k,iPhyt)*Bio(i,k,iPhyt))
|
|---|
| 777 | cff2=fac2*Bio(i,k,iZoop)
|
|---|
| 778 | cff3=fac1*ZooAE_N(ng)
|
|---|
| 779 | Bio(i,k,iZoop)=Bio(i,k,iZoop)/ &
|
|---|
| 780 | & (1.0_r8+cff2+cff3)
|
|---|
| 781 | !
|
|---|
| 782 | ! Zooplankton mortality and excretion.
|
|---|
| 783 | !
|
|---|
| 784 | N_Flux_Zmortal=cff2*Bio(i,k,iZoop)
|
|---|
| 785 | N_Flux_Zexcret=cff3*Bio(i,k,iZoop)
|
|---|
| 786 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)+N_Flux_Zexcret
|
|---|
| 787 | Bio(i,k,iSDeN)=Bio(i,k,iSDeN)+N_Flux_Zmortal
|
|---|
| 788 | !
|
|---|
| 789 | ! Zooplankton basal metabolism (limited by a zooplankton minimum).
|
|---|
| 790 | !
|
|---|
| 791 | N_Flux_Zmetabo=cff1*MAX(Bio(i,k,iZoop)-ZooMin(ng),0.0_r8)
|
|---|
| 792 | Bio(i,k,iZoop)=Bio(i,k,iZoop)-N_Flux_Zmetabo
|
|---|
| 793 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)+N_Flux_Zmetabo
|
|---|
| 794 | #ifdef OXYGEN
|
|---|
| 795 | Bio(i,k,iOxyg)=Bio(i,k,iOxyg)- &
|
|---|
| 796 | & rOxNH4*(N_Flux_Zmetabo+N_Flux_Zexcret)
|
|---|
| 797 | #endif
|
|---|
| 798 | #ifdef CARBON
|
|---|
| 799 | Bio(i,k,iSDeC)=Bio(i,k,iSDeC)+ &
|
|---|
| 800 | & ZooCN(ng)*N_Flux_Zmortal
|
|---|
| 801 | Bio(i,k,iTIC_)=Bio(i,k,iTIC_)+ &
|
|---|
| 802 | & ZooCN(ng)*(N_Flux_Zmetabo+N_Flux_Zexcret)
|
|---|
| 803 | #endif
|
|---|
| 804 | END DO
|
|---|
| 805 | END DO
|
|---|
| 806 | !
|
|---|
| 807 | !-----------------------------------------------------------------------
|
|---|
| 808 | ! Coagulation of phytoplankton and small detritus to large detritus.
|
|---|
| 809 | !-----------------------------------------------------------------------
|
|---|
| 810 | !
|
|---|
| 811 | fac1=dtdays*CoagR(ng)
|
|---|
| 812 | DO k=1,N(ng)
|
|---|
| 813 | DO i=Istr,Iend
|
|---|
| 814 | cff1=fac1*(Bio(i,k,iSDeN)+Bio(i,k,iPhyt))
|
|---|
| 815 | cff2=1.0_r8/(1.0_r8+cff1)
|
|---|
| 816 | Bio(i,k,iPhyt)=Bio(i,k,iPhyt)*cff2
|
|---|
| 817 | Bio(i,k,iChlo)=Bio(i,k,iChlo)*cff2
|
|---|
| 818 | Bio(i,k,iSDeN)=Bio(i,k,iSDeN)*cff2
|
|---|
| 819 | N_Flux_CoagP=Bio(i,k,iPhyt)*cff1
|
|---|
| 820 | N_Flux_CoagD=Bio(i,k,iSDeN)*cff1
|
|---|
| 821 | Bio(i,k,iLDeN)=Bio(i,k,iLDeN)+ &
|
|---|
| 822 | & N_Flux_CoagP+N_Flux_CoagD
|
|---|
| 823 | #ifdef CARBON
|
|---|
| 824 | Bio(i,k,iSDeC)=Bio(i,k,iSDeC)-PhyCN(ng)*N_Flux_CoagD
|
|---|
| 825 | Bio(i,k,iLDeC)=Bio(i,k,iLDeC)+ &
|
|---|
| 826 | & PhyCN(ng)*(N_Flux_CoagP+N_Flux_CoagD)
|
|---|
| 827 | #endif
|
|---|
| 828 | END DO
|
|---|
| 829 | END DO
|
|---|
| 830 | !
|
|---|
| 831 | !-----------------------------------------------------------------------
|
|---|
| 832 | ! Detritus recycling to NH4, remineralization.
|
|---|
| 833 | !-----------------------------------------------------------------------
|
|---|
| 834 | !
|
|---|
| 835 | #ifdef OXYGEN
|
|---|
| 836 | DO k=1,N(ng)
|
|---|
| 837 | DO i=Istr,Iend
|
|---|
| 838 | fac1=MAX(Bio(i,k,iOxyg)-6.0_r8,0.0_r8) ! O2 off max
|
|---|
| 839 | fac2=MAX(fac1/(3.0_r8+fac1),0.0_r8) ! MM for O2 dependence
|
|---|
| 840 | cff1=dtdays*SDeRRN(ng)*fac2
|
|---|
| 841 | cff2=1.0_r8/(1.0_r8+cff1)
|
|---|
| 842 | cff3=dtdays*LDeRRN(ng)*fac2
|
|---|
| 843 | cff4=1.0_r8/(1.0_r8+cff3)
|
|---|
| 844 | Bio(i,k,iSDeN)=Bio(i,k,iSDeN)*cff2
|
|---|
| 845 | Bio(i,k,iLDeN)=Bio(i,k,iLDeN)*cff4
|
|---|
| 846 | N_Flux_Remine=Bio(i,k,iSDeN)*cff1+Bio(i,k,iLDeN)*cff3
|
|---|
| 847 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)+N_Flux_Remine
|
|---|
| 848 | Bio(i,k,iOxyg)=Bio(i,k,iOxyg)-N_Flux_Remine*rOxNH4
|
|---|
| 849 | END DO
|
|---|
| 850 | END DO
|
|---|
| 851 | #else
|
|---|
| 852 | cff1=dtdays*SDeRRN(ng)
|
|---|
| 853 | cff2=1.0_r8/(1.0_r8+cff1)
|
|---|
| 854 | cff3=dtdays*LDeRRN(ng)
|
|---|
| 855 | cff4=1.0_r8/(1.0_r8+cff3)
|
|---|
| 856 | DO k=1,N(ng)
|
|---|
| 857 | DO i=Istr,Iend
|
|---|
| 858 | Bio(i,k,iSDeN)=Bio(i,k,iSDeN)*cff2
|
|---|
| 859 | Bio(i,k,iLDeN)=Bio(i,k,iLDeN)*cff4
|
|---|
| 860 | N_Flux_Remine=Bio(i,k,iSDeN)*cff1+Bio(i,k,iLDeN)*cff3
|
|---|
| 861 | Bio(i,k,iNH4_)=Bio(i,k,iNH4_)+N_Flux_Remine
|
|---|
| 862 | END DO
|
|---|
| 863 | END DO
|
|---|
| 864 | #endif
|
|---|
| 865 | #ifdef OXYGEN
|
|---|
| 866 | !
|
|---|
| 867 | !-----------------------------------------------------------------------
|
|---|
| 868 | ! Surface O2 gas exchange.
|
|---|
| 869 | !-----------------------------------------------------------------------
|
|---|
| 870 | !
|
|---|
| 871 | ! Compute surface O2 gas exchange.
|
|---|
| 872 | !
|
|---|
| 873 | cff1=rho0*550.0_r8
|
|---|
| 874 | cff2=dtdays*0.31_r8*24.0_r8/100.0_r8
|
|---|
| 875 | k=N(ng)
|
|---|
| 876 | DO i=Istr,Iend
|
|---|
| 877 | !
|
|---|
| 878 | ! Compute O2 transfer velocity : u10squared (u10 in m/s)
|
|---|
| 879 | !
|
|---|
| 880 | # ifdef BULK_FLUXES
|
|---|
| 881 | u10squ=Uwind(i,j)*Uwind(i,j)+Vwind(i,j)*Vwind(i,j)
|
|---|
| 882 | # else
|
|---|
| 883 | u10squ=cff1*SQRT((0.5_r8*(sustr(i,j)+sustr(i+1,j)))**2+ &
|
|---|
| 884 | & (0.5_r8*(svstr(i,j)+svstr(i,j+1)))**2)
|
|---|
| 885 | # endif
|
|---|
| 886 | # ifdef OCMIP_OXYGEN_SC
|
|---|
| 887 | !
|
|---|
| 888 | ! Alternative formulation for Schmidt number (Sc will be slightly
|
|---|
| 889 | ! smaller up to about 35 C): Compute the Schmidt number of oxygen
|
|---|
| 890 | ! in seawater using the formulation proposed by Keeling et al.
|
|---|
| 891 | ! (1998, Global Biogeochem. Cycles, 12, 141-163). Input temperature
|
|---|
| 892 | ! in Celsius.
|
|---|
| 893 | !
|
|---|
| 894 | SchmidtN_Ox=1638.0_r8- &
|
|---|
| 895 | & Bio(i,k,itemp)*(81.83_r8- &
|
|---|
| 896 | & Bio(i,k,itemp)* &
|
|---|
| 897 | & (1.483_r8- &
|
|---|
| 898 | & Bio(i,k,itemp)*0.008004_r8))
|
|---|
| 899 | # else
|
|---|
| 900 | !
|
|---|
| 901 | ! Calculate the Schmidt number for O2 in sea water (Wanninkhof, 1992).
|
|---|
| 902 | !
|
|---|
| 903 | SchmidtN_Ox=1953.4_r8- &
|
|---|
| 904 | & Bio(i,k,itemp)*(128.0_r8- &
|
|---|
| 905 | & Bio(i,k,itemp)* &
|
|---|
| 906 | & (3.9918_r8- &
|
|---|
| 907 | & Bio(i,k,itemp)*0.050091_r8))
|
|---|
| 908 | # endif
|
|---|
| 909 |
|
|---|
| 910 | cff3=cff2*u10squ*SQRT(660.0_r8/SchmidtN_Ox)
|
|---|
| 911 | !
|
|---|
| 912 | ! Calculate O2 saturation concentration using Garcia and Gordon
|
|---|
| 913 | ! L&O (1992) formula, (EXP(AA) is in ml/l).
|
|---|
| 914 | !
|
|---|
| 915 | TS=LOG((298.15_r8-Bio(i,k,itemp))/ &
|
|---|
| 916 | & (273.15_r8+Bio(i,k,itemp)))
|
|---|
| 917 | AA=OA0+TS*(OA1+TS*(OA2+TS*(OA3+TS*(OA4+TS*OA5))))+ &
|
|---|
| 918 | & Bio(i,k,isalt)*(OB0+TS*(OB1+TS*(OB2+TS*OB3)))+ &
|
|---|
| 919 | & OC0*Bio(i,k,isalt)*Bio(i,k,isalt)
|
|---|
| 920 | !
|
|---|
| 921 | ! Convert from ml/l to mmol/m3.
|
|---|
| 922 | !
|
|---|
| 923 | O2satu=l2mol*EXP(AA)
|
|---|
| 924 | !
|
|---|
| 925 | ! Add in O2 gas exchange.
|
|---|
| 926 | !
|
|---|
| 927 | O2_Flux=cff3*(O2satu-Bio(i,k,iOxyg))
|
|---|
| 928 | Bio(i,k,iOxyg)=Bio(i,k,iOxyg)+ &
|
|---|
| 929 | & O2_Flux*Hz_inv(i,k)
|
|---|
| 930 | # ifdef DIAGNOSTICS_BIO
|
|---|
| 931 | DiaBio2d(i,j,iO2fx)=DiaBio2d(i,j,iO2fx)+ &
|
|---|
| 932 | # ifdef WET_DRY
|
|---|
| 933 | & rmask_full(i,j)* &
|
|---|
| 934 | # endif
|
|---|
| 935 | & O2_Flux*fiter
|
|---|
| 936 | # endif
|
|---|
| 937 |
|
|---|
| 938 | END DO
|
|---|
| 939 | #endif
|
|---|
| 940 |
|
|---|
| 941 | #ifdef CARBON
|
|---|
| 942 | !
|
|---|
| 943 | !-----------------------------------------------------------------------
|
|---|
| 944 | ! Allow different remineralization rates for detrital C and detrital N.
|
|---|
| 945 | !-----------------------------------------------------------------------
|
|---|
| 946 | !
|
|---|
| 947 | cff1=dtdays*SDeRRC(ng)
|
|---|
| 948 | cff2=1.0_r8/(1.0_r8+cff1)
|
|---|
| 949 | cff3=dtdays*LDeRRC(ng)
|
|---|
| 950 | cff4=1.0_r8/(1.0_r8+cff3)
|
|---|
| 951 | DO k=1,N(ng)
|
|---|
| 952 | DO i=Istr,Iend
|
|---|
| 953 | Bio(i,k,iSDeC)=Bio(i,k,iSDeC)*cff2
|
|---|
| 954 | Bio(i,k,iLDeC)=Bio(i,k,iLDeC)*cff4
|
|---|
| 955 | C_Flux_Remine=Bio(i,k,iSDeC)*cff1+Bio(i,k,iLDeC)*cff3
|
|---|
| 956 | Bio(i,k,iTIC_)=Bio(i,k,iTIC_)+C_Flux_Remine
|
|---|
| 957 | END DO
|
|---|
| 958 | END DO
|
|---|
| 959 | !
|
|---|
| 960 | !-----------------------------------------------------------------------
|
|---|
| 961 | ! Surface CO2 gas exchange.
|
|---|
| 962 | !-----------------------------------------------------------------------
|
|---|
| 963 | !
|
|---|
| 964 | ! Compute equilibrium partial pressure inorganic carbon (ppmv) at the
|
|---|
| 965 | ! surface.
|
|---|
| 966 | !
|
|---|
| 967 | k=N(ng)
|
|---|
| 968 | # ifdef pCO2_RZ
|
|---|
| 969 | CALL pCO2_water_RZ (Istr, Iend, LBi, UBi, LBj, UBj, &
|
|---|
| 970 | & IminS, ImaxS, j, DoNewton, &
|
|---|
| 971 | # ifdef MASKING
|
|---|
| 972 | & rmask, &
|
|---|
| 973 | # endif
|
|---|
| 974 | & Bio(IminS:,k,itemp), Bio(IminS:,k,isalt), &
|
|---|
| 975 | & Bio(IminS:,k,iTIC_), Bio(IminS:,k,iTAlk), &
|
|---|
| 976 | & pH, pCO2)
|
|---|
| 977 | # else
|
|---|
| 978 | CALL pCO2_water (Istr, Iend, LBi, UBi, LBj, UBj, &
|
|---|
| 979 | & IminS, ImaxS, j, DoNewton, &
|
|---|
| 980 | # ifdef MASKING
|
|---|
| 981 | & rmask, &
|
|---|
| 982 | # endif
|
|---|
| 983 | & Bio(IminS:,k,itemp), Bio(IminS:,k,isalt), &
|
|---|
| 984 | & Bio(IminS:,k,iTIC_), Bio(IminS:,k,iTAlk), &
|
|---|
| 985 | & 0.0_r8, 0.0_r8, pH, pCO2)
|
|---|
| 986 | # endif
|
|---|
| 987 | !
|
|---|
| 988 | ! Compute surface CO2 gas exchange.
|
|---|
| 989 | !
|
|---|
| 990 | cff1=rho0*550.0_r8
|
|---|
| 991 | cff2=dtdays*0.31_r8*24.0_r8/100.0_r8
|
|---|
| 992 | DO i=Istr,Iend
|
|---|
| 993 | !
|
|---|
| 994 | ! Compute CO2 transfer velocity : u10squared (u10 in m/s)
|
|---|
| 995 | !
|
|---|
| 996 | # ifdef BULK_FLUXES
|
|---|
| 997 | u10squ=Uwind(i,j)**2+Vwind(i,j)**2
|
|---|
| 998 | # else
|
|---|
| 999 | u10squ=cff1*SQRT((0.5_r8*(sustr(i,j)+sustr(i+1,j)))**2+ &
|
|---|
| 1000 | & (0.5_r8*(svstr(i,j)+svstr(i,j+1)))**2)
|
|---|
| 1001 | # endif
|
|---|
| 1002 | SchmidtN=Acoef- &
|
|---|
| 1003 | & Bio(i,k,itemp)*(Bcoef- &
|
|---|
| 1004 | & Bio(i,k,itemp)*(Ccoef- &
|
|---|
| 1005 | & Bio(i,k,itemp)*Dcoef))
|
|---|
| 1006 | cff3=cff2*u10squ*SQRT(660.0_r8/SchmidtN)
|
|---|
| 1007 | !
|
|---|
| 1008 | ! Calculate CO2 solubility [mol/(kg.atm)] using Weiss (1974) formula.
|
|---|
| 1009 | !
|
|---|
| 1010 | TempK=0.01_r8*(Bio(i,k,itemp)+273.15_r8)
|
|---|
| 1011 | CO2_sol=EXP(A1+ &
|
|---|
| 1012 | & A2/TempK+ &
|
|---|
| 1013 | & A3*LOG(TempK)+ &
|
|---|
| 1014 | & Bio(i,k,isalt)*(B1+TempK*(B2+B3*TempK)))
|
|---|
| 1015 | !
|
|---|
| 1016 | ! Add in CO2 gas exchange.
|
|---|
| 1017 | !
|
|---|
| 1018 | CALL caldate (r_date, tdays(ng), year, yday, month, iday, &
|
|---|
| 1019 | & hour)
|
|---|
| 1020 | pmonth=2003.0_r8-1951.0_r8+yday/365.0_r8
|
|---|
| 1021 | !! pCO2air_secular=D0+D1*pmonth*12.0_r8+ &
|
|---|
| 1022 | !! & D2*SIN(pi2*pmonth+D3)+ &
|
|---|
| 1023 | !! & D4*SIN(pi2*pmonth+D5)+ &
|
|---|
| 1024 | !! & D6*SIN(pi2*pmonth+D7)
|
|---|
| 1025 | !! CO2_Flux=cff3*CO2_sol*(pCO2air_secular-pCO2(i))
|
|---|
| 1026 | CO2_Flux=cff3*CO2_sol*(pCO2air(ng)-pCO2(i))
|
|---|
| 1027 | Bio(i,k,iTIC_)=Bio(i,k,iTIC_)+ &
|
|---|
| 1028 | & CO2_Flux*Hz_inv(i,k)
|
|---|
| 1029 | # ifdef DIAGNOSTICS_BIO
|
|---|
| 1030 | DiaBio2d(i,j,iCOfx)=DiaBio2d(i,j,iCOfx)+ &
|
|---|
| 1031 | # ifdef WET_DRY
|
|---|
| 1032 | & rmask_full(i,j)* &
|
|---|
| 1033 | # endif
|
|---|
| 1034 | & CO2_Flux*fiter
|
|---|
| 1035 | DiaBio2d(i,j,ipCO2)=pCO2(i)
|
|---|
| 1036 | # ifdef WET_DRY
|
|---|
| 1037 | DiaBio2d(i,j,ipCO2)=DiaBio2d(i,j,ipCO2)*rmask_full(i,j)
|
|---|
| 1038 | # endif
|
|---|
| 1039 | # endif
|
|---|
| 1040 | END DO
|
|---|
| 1041 | #endif
|
|---|
| 1042 | !
|
|---|
| 1043 | !-----------------------------------------------------------------------
|
|---|
| 1044 | ! Vertical sinking terms.
|
|---|
| 1045 | !-----------------------------------------------------------------------
|
|---|
| 1046 | !
|
|---|
| 1047 | ! Reconstruct vertical profile of selected biological constituents
|
|---|
| 1048 | ! "Bio(:,:,isink)" in terms of a set of parabolic segments within each
|
|---|
| 1049 | ! grid box. Then, compute semi-Lagrangian flux due to sinking.
|
|---|
| 1050 | !
|
|---|
| 1051 | SINK_LOOP: DO isink=1,Nsink
|
|---|
| 1052 | ibio=idsink(isink)
|
|---|
| 1053 | !
|
|---|
| 1054 | ! Copy concentration of biological particulates into scratch array
|
|---|
| 1055 | ! "qc" (q-central, restrict it to be positive) which is hereafter
|
|---|
| 1056 | ! interpreted as a set of grid-box averaged values for biogeochemical
|
|---|
| 1057 | ! constituent concentration.
|
|---|
| 1058 | !
|
|---|
| 1059 | DO k=1,N(ng)
|
|---|
| 1060 | DO i=Istr,Iend
|
|---|
| 1061 | qc(i,k)=Bio(i,k,ibio)
|
|---|
| 1062 | END DO
|
|---|
| 1063 | END DO
|
|---|
| 1064 | !
|
|---|
| 1065 | DO k=N(ng)-1,1,-1
|
|---|
| 1066 | DO i=Istr,Iend
|
|---|
| 1067 | FC(i,k)=(qc(i,k+1)-qc(i,k))*Hz_inv2(i,k)
|
|---|
| 1068 | END DO
|
|---|
| 1069 | END DO
|
|---|
| 1070 | DO k=2,N(ng)-1
|
|---|
| 1071 | DO i=Istr,Iend
|
|---|
| 1072 | dltR=Hz(i,j,k)*FC(i,k)
|
|---|
| 1073 | dltL=Hz(i,j,k)*FC(i,k-1)
|
|---|
| 1074 | cff=Hz(i,j,k-1)+2.0_r8*Hz(i,j,k)+Hz(i,j,k+1)
|
|---|
| 1075 | cffR=cff*FC(i,k)
|
|---|
| 1076 | cffL=cff*FC(i,k-1)
|
|---|
| 1077 | !
|
|---|
| 1078 | ! Apply PPM monotonicity constraint to prevent oscillations within the
|
|---|
| 1079 | ! grid box.
|
|---|
| 1080 | !
|
|---|
| 1081 | IF ((dltR*dltL).le.0.0_r8) THEN
|
|---|
| 1082 | dltR=0.0_r8
|
|---|
| 1083 | dltL=0.0_r8
|
|---|
| 1084 | ELSE IF (ABS(dltR).gt.ABS(cffL)) THEN
|
|---|
| 1085 | dltR=cffL
|
|---|
| 1086 | ELSE IF (ABS(dltL).gt.ABS(cffR)) THEN
|
|---|
| 1087 | dltL=cffR
|
|---|
| 1088 | END IF
|
|---|
| 1089 | !
|
|---|
| 1090 | ! Compute right and left side values (bR,bL) of parabolic segments
|
|---|
| 1091 | ! within grid box Hz(k); (WR,WL) are measures of quadratic variations.
|
|---|
| 1092 | !
|
|---|
| 1093 | ! NOTE: Although each parabolic segment is monotonic within its grid
|
|---|
| 1094 | ! box, monotonicity of the whole profile is not guaranteed,
|
|---|
| 1095 | ! because bL(k+1)-bR(k) may still have different sign than
|
|---|
| 1096 | ! qc(i,k+1)-qc(i,k). This possibility is excluded,
|
|---|
| 1097 | ! after bL and bR are reconciled using WENO procedure.
|
|---|
| 1098 | !
|
|---|
| 1099 | cff=(dltR-dltL)*Hz_inv3(i,k)
|
|---|
| 1100 | dltR=dltR-cff*Hz(i,j,k+1)
|
|---|
| 1101 | dltL=dltL+cff*Hz(i,j,k-1)
|
|---|
| 1102 | bR(i,k)=qc(i,k)+dltR
|
|---|
| 1103 | bL(i,k)=qc(i,k)-dltL
|
|---|
| 1104 | WR(i,k)=(2.0_r8*dltR-dltL)**2
|
|---|
| 1105 | WL(i,k)=(dltR-2.0_r8*dltL)**2
|
|---|
| 1106 | END DO
|
|---|
| 1107 | END DO
|
|---|
| 1108 | cff=1.0E-14_r8
|
|---|
| 1109 | DO k=2,N(ng)-2
|
|---|
| 1110 | DO i=Istr,Iend
|
|---|
| 1111 | dltL=MAX(cff,WL(i,k ))
|
|---|
| 1112 | dltR=MAX(cff,WR(i,k+1))
|
|---|
| 1113 | bR(i,k)=(dltR*bR(i,k)+dltL*bL(i,k+1))/(dltR+dltL)
|
|---|
| 1114 | bL(i,k+1)=bR(i,k)
|
|---|
| 1115 | END DO
|
|---|
| 1116 | END DO
|
|---|
| 1117 | DO i=Istr,Iend
|
|---|
| 1118 | FC(i,N(ng))=0.0_r8 ! NO-flux boundary condition
|
|---|
| 1119 | #if defined LINEAR_CONTINUATION
|
|---|
| 1120 | bL(i,N(ng))=bR(i,N(ng)-1)
|
|---|
| 1121 | bR(i,N(ng))=2.0_r8*qc(i,N(ng))-bL(i,N(ng))
|
|---|
| 1122 | #elif defined NEUMANN
|
|---|
| 1123 | bL(i,N(ng))=bR(i,N(ng)-1)
|
|---|
| 1124 | bR(i,N(ng))=1.5_r8*qc(i,N(ng))-0.5_r8*bL(i,N(ng))
|
|---|
| 1125 | #else
|
|---|
| 1126 | bR(i,N(ng))=qc(i,N(ng)) ! default strictly monotonic
|
|---|
| 1127 | bL(i,N(ng))=qc(i,N(ng)) ! conditions
|
|---|
| 1128 | bR(i,N(ng)-1)=qc(i,N(ng))
|
|---|
| 1129 | #endif
|
|---|
| 1130 | #if defined LINEAR_CONTINUATION
|
|---|
| 1131 | bR(i,1)=bL(i,2)
|
|---|
| 1132 | bL(i,1)=2.0_r8*qc(i,1)-bR(i,1)
|
|---|
| 1133 | #elif defined NEUMANN
|
|---|
| 1134 | bR(i,1)=bL(i,2)
|
|---|
| 1135 | bL(i,1)=1.5_r8*qc(i,1)-0.5_r8*bR(i,1)
|
|---|
| 1136 | #else
|
|---|
| 1137 | bL(i,2)=qc(i,1) ! bottom grid boxes are
|
|---|
| 1138 | bR(i,1)=qc(i,1) ! re-assumed to be
|
|---|
| 1139 | bL(i,1)=qc(i,1) ! piecewise constant.
|
|---|
| 1140 | #endif
|
|---|
| 1141 | END DO
|
|---|
| 1142 | !
|
|---|
| 1143 | ! Apply monotonicity constraint again, since the reconciled interfacial
|
|---|
| 1144 | ! values may cause a non-monotonic behavior of the parabolic segments
|
|---|
| 1145 | ! inside the grid box.
|
|---|
| 1146 | !
|
|---|
| 1147 | DO k=1,N(ng)
|
|---|
| 1148 | DO i=Istr,Iend
|
|---|
| 1149 | dltR=bR(i,k)-qc(i,k)
|
|---|
| 1150 | dltL=qc(i,k)-bL(i,k)
|
|---|
| 1151 | cffR=2.0_r8*dltR
|
|---|
| 1152 | cffL=2.0_r8*dltL
|
|---|
| 1153 | IF ((dltR*dltL).lt.0.0_r8) THEN
|
|---|
| 1154 | dltR=0.0_r8
|
|---|
| 1155 | dltL=0.0_r8
|
|---|
| 1156 | ELSE IF (ABS(dltR).gt.ABS(cffL)) THEN
|
|---|
| 1157 | dltR=cffL
|
|---|
| 1158 | ELSE IF (ABS(dltL).gt.ABS(cffR)) THEN
|
|---|
| 1159 | dltL=cffR
|
|---|
| 1160 | END IF
|
|---|
| 1161 | bR(i,k)=qc(i,k)+dltR
|
|---|
| 1162 | bL(i,k)=qc(i,k)-dltL
|
|---|
| 1163 | END DO
|
|---|
| 1164 | END DO
|
|---|
| 1165 | !
|
|---|
| 1166 | ! After this moment reconstruction is considered complete. The next
|
|---|
| 1167 | ! stage is to compute vertical advective fluxes, FC. It is expected
|
|---|
| 1168 | ! that sinking may occurs relatively fast, the algorithm is designed
|
|---|
| 1169 | ! to be free of CFL criterion, which is achieved by allowing
|
|---|
| 1170 | ! integration bounds for semi-Lagrangian advective flux to use as
|
|---|
| 1171 | ! many grid boxes in upstream direction as necessary.
|
|---|
| 1172 | !
|
|---|
| 1173 | ! In the two code segments below, WL is the z-coordinate of the
|
|---|
| 1174 | ! departure point for grid box interface z_w with the same indices;
|
|---|
| 1175 | ! FC is the finite volume flux; ksource(:,k) is index of vertical
|
|---|
| 1176 | ! grid box which contains the departure point (restricted by N(ng)).
|
|---|
| 1177 | ! During the search: also add in content of whole grid boxes
|
|---|
| 1178 | ! participating in FC.
|
|---|
| 1179 | !
|
|---|
| 1180 | cff=dtdays*ABS(Wbio(isink))
|
|---|
| 1181 | DO k=1,N(ng)
|
|---|
| 1182 | DO i=Istr,Iend
|
|---|
| 1183 | FC(i,k-1)=0.0_r8
|
|---|
| 1184 | WL(i,k)=z_w(i,j,k-1)+cff
|
|---|
| 1185 | WR(i,k)=Hz(i,j,k)*qc(i,k)
|
|---|
| 1186 | ksource(i,k)=k
|
|---|
| 1187 | END DO
|
|---|
| 1188 | END DO
|
|---|
| 1189 | DO k=1,N(ng)
|
|---|
| 1190 | DO ks=k,N(ng)-1
|
|---|
| 1191 | DO i=Istr,Iend
|
|---|
| 1192 | IF (WL(i,k).gt.z_w(i,j,ks)) THEN
|
|---|
| 1193 | ksource(i,k)=ks+1
|
|---|
| 1194 | FC(i,k-1)=FC(i,k-1)+WR(i,ks)
|
|---|
| 1195 | END IF
|
|---|
| 1196 | END DO
|
|---|
| 1197 | END DO
|
|---|
| 1198 | END DO
|
|---|
| 1199 | !
|
|---|
| 1200 | ! Finalize computation of flux: add fractional part.
|
|---|
| 1201 | !
|
|---|
| 1202 | DO k=1,N(ng)
|
|---|
| 1203 | DO i=Istr,Iend
|
|---|
| 1204 | ks=ksource(i,k)
|
|---|
| 1205 | cu=MIN(1.0_r8,(WL(i,k)-z_w(i,j,ks-1))*Hz_inv(i,ks))
|
|---|
| 1206 | FC(i,k-1)=FC(i,k-1)+ &
|
|---|
| 1207 | & Hz(i,j,ks)*cu* &
|
|---|
| 1208 | & (bL(i,ks)+ &
|
|---|
| 1209 | & cu*(0.5_r8*(bR(i,ks)-bL(i,ks))- &
|
|---|
| 1210 | & (1.5_r8-cu)* &
|
|---|
| 1211 | & (bR(i,ks)+bL(i,ks)- &
|
|---|
| 1212 | & 2.0_r8*qc(i,ks))))
|
|---|
| 1213 | END DO
|
|---|
| 1214 | END DO
|
|---|
| 1215 | DO k=1,N(ng)
|
|---|
| 1216 | DO i=Istr,Iend
|
|---|
| 1217 | Bio(i,k,ibio)=qc(i,k)+(FC(i,k)-FC(i,k-1))*Hz_inv(i,k)
|
|---|
| 1218 | END DO
|
|---|
| 1219 | END DO
|
|---|
| 1220 |
|
|---|
| 1221 | #ifdef BIO_SEDIMENT
|
|---|
| 1222 | !
|
|---|
| 1223 | ! Particulate flux reaching the seafloor is remineralized and returned
|
|---|
| 1224 | ! to the dissolved nitrate pool. Without this conversion, particulate
|
|---|
| 1225 | ! material falls out of the system. This is a temporary fix to restore
|
|---|
| 1226 | ! total nitrogen conservation. It will be replaced later by a
|
|---|
| 1227 | ! parameterization that includes the time delay of remineralization
|
|---|
| 1228 | ! and dissolved oxygen.
|
|---|
| 1229 | !
|
|---|
| 1230 | cff2=4.0_r8/16.0_r8
|
|---|
| 1231 | # ifdef OXYGEN
|
|---|
| 1232 | cff3=115.0_r8/16.0_r8
|
|---|
| 1233 | cff4=106.0_r8/16.0_r8
|
|---|
| 1234 | # endif
|
|---|
| 1235 | IF ((ibio.eq.iPhyt).or. &
|
|---|
| 1236 | & (ibio.eq.iSDeN).or. &
|
|---|
| 1237 | & (ibio.eq.iLDeN)) THEN
|
|---|
| 1238 | DO i=Istr,Iend
|
|---|
| 1239 | cff1=FC(i,0)*Hz_inv(i,1)
|
|---|
| 1240 | # ifdef DENITRIFICATION
|
|---|
| 1241 | Bio(i,1,iNH4_)=Bio(i,1,iNH4_)+cff1*cff2
|
|---|
| 1242 | # ifdef DIAGNOSTICS_BIO
|
|---|
| 1243 | DiaBio2d(i,j,iDNIT)=DiaBio2d(i,j,iDNIT)+ &
|
|---|
| 1244 | # ifdef WET_DRY
|
|---|
| 1245 | & rmask_full(i,j)* &
|
|---|
| 1246 | # endif
|
|---|
| 1247 | & (1.0_r8-cff2)*cff1*Hz(i,j,1)*fiter
|
|---|
| 1248 | # endif
|
|---|
| 1249 | # ifdef OXYGEN
|
|---|
| 1250 | Bio(i,1,iOxyg)=Bio(i,1,iOxyg)-cff1*cff3
|
|---|
| 1251 | # endif
|
|---|
| 1252 | # else
|
|---|
| 1253 | Bio(i,1,iNH4_)=Bio(i,1,iNH4_)+cff1
|
|---|
| 1254 | # ifdef OXYGEN
|
|---|
| 1255 | Bio(i,1,iOxyg)=Bio(i,1,iOxyg)-cff1*cff4
|
|---|
| 1256 | # endif
|
|---|
| 1257 | # endif
|
|---|
| 1258 | END DO
|
|---|
| 1259 | END IF
|
|---|
| 1260 | # ifdef CARBON
|
|---|
| 1261 | # ifdef DENITRIFICATION
|
|---|
| 1262 | cff3=12.0_r8
|
|---|
| 1263 | cff4=0.74_r8
|
|---|
| 1264 | # endif
|
|---|
| 1265 | IF ((ibio.eq.iSDeC).or. &
|
|---|
| 1266 | & (ibio.eq.iLDeC))THEN
|
|---|
| 1267 | DO i=Istr,Iend
|
|---|
| 1268 | cff1=FC(i,0)*Hz_inv(i,1)
|
|---|
| 1269 | Bio(i,1,iTIC_)=Bio(i,1,iTIC_)+cff1
|
|---|
| 1270 | END DO
|
|---|
| 1271 | END IF
|
|---|
| 1272 | IF (ibio.eq.iPhyt)THEN
|
|---|
| 1273 | DO i=Istr,Iend
|
|---|
| 1274 | cff1=FC(i,0)*Hz_inv(i,1)
|
|---|
| 1275 | Bio(i,1,iTIC_)=Bio(i,1,iTIC_)+cff1*PhyCN(ng)
|
|---|
| 1276 | END DO
|
|---|
| 1277 | END IF
|
|---|
| 1278 | # endif
|
|---|
| 1279 | #endif
|
|---|
| 1280 | END DO SINK_LOOP
|
|---|
| 1281 | END DO ITER_LOOP
|
|---|
| 1282 | !
|
|---|
| 1283 | !-----------------------------------------------------------------------
|
|---|
| 1284 | ! Update global tracer variables: Add increment due to BGC processes
|
|---|
| 1285 | ! to tracer array in time index "nnew". Index "nnew" is solution after
|
|---|
| 1286 | ! advection and mixing and has transport units (m Tunits) hence the
|
|---|
| 1287 | ! increment is multiplied by Hz. Notice that we need to subtract
|
|---|
| 1288 | ! original values "Bio_old" at the top of the routine to just account
|
|---|
| 1289 | ! for the concentractions affected by BGC processes. This also takes
|
|---|
| 1290 | ! into account any constraints (non-negative concentrations, carbon
|
|---|
| 1291 | ! concentration range) specified before entering BGC kernel. If "Bio"
|
|---|
| 1292 | ! were unchanged by BGC processes, the increment would be exactly
|
|---|
| 1293 | ! zero. Notice that final tracer values, t(:,:,:,nnew,:) are not
|
|---|
| 1294 | ! bounded >=0 so that we can preserve total inventory of N and
|
|---|
| 1295 | ! C even when advection causes tracer concentration to go negative.
|
|---|
| 1296 | ! (J. Wilkin and H. Arango, Apr 27, 2012)
|
|---|
| 1297 | !-----------------------------------------------------------------------
|
|---|
| 1298 | !
|
|---|
| 1299 | DO itrc=1,NBT
|
|---|
| 1300 | ibio=idbio(itrc)
|
|---|
| 1301 | DO k=1,N(ng)
|
|---|
| 1302 | DO i=Istr,Iend
|
|---|
| 1303 | cff=Bio(i,k,ibio)-Bio_old(i,k,ibio)
|
|---|
| 1304 | t(i,j,k,nnew,ibio)=t(i,j,k,nnew,ibio)+cff*Hz(i,j,k)
|
|---|
| 1305 | END DO
|
|---|
| 1306 | END DO
|
|---|
| 1307 | END DO
|
|---|
| 1308 | END DO J_LOOP
|
|---|
| 1309 |
|
|---|
| 1310 | RETURN
|
|---|
| 1311 | END SUBROUTINE biology_tile
|
|---|
| 1312 |
|
|---|
| 1313 | #ifdef CARBON
|
|---|
| 1314 | # ifdef pCO2_RZ
|
|---|
| 1315 | SUBROUTINE pCO2_water_RZ (Istr, Iend, &
|
|---|
| 1316 | & LBi, UBi, LBj, UBj, IminS, ImaxS, &
|
|---|
| 1317 | & j, DoNewton, &
|
|---|
| 1318 | # ifdef MASKING
|
|---|
| 1319 | & rmask, &
|
|---|
| 1320 | # endif
|
|---|
| 1321 | & T, S, TIC, TAlk, pH, pCO2)
|
|---|
| 1322 | !
|
|---|
| 1323 | !***********************************************************************
|
|---|
| 1324 | ! !
|
|---|
| 1325 | ! This routine computes equilibrium partial pressure of CO2 (pCO2) !
|
|---|
| 1326 | ! in the surface seawater. !
|
|---|
| 1327 | ! !
|
|---|
| 1328 | ! On Input: !
|
|---|
| 1329 | ! !
|
|---|
| 1330 | ! Istr Starting tile index in the I-direction. !
|
|---|
| 1331 | ! Iend Ending tile index in the I-direction. !
|
|---|
| 1332 | ! LBi I-dimension lower bound. !
|
|---|
| 1333 | ! UBi I-dimension upper bound. !
|
|---|
| 1334 | ! LBj J-dimension lower bound. !
|
|---|
| 1335 | ! UBj J-dimension upper bound. !
|
|---|
| 1336 | ! IminS I-dimension lower bound for private arrays. !
|
|---|
| 1337 | ! ImaxS I-dimension upper bound for private arrays. !
|
|---|
| 1338 | ! j j-pipelined index. !
|
|---|
| 1339 | ! DoNewton Iteration solver: !
|
|---|
| 1340 | ! [0] Bracket and bisection. !
|
|---|
| 1341 | ! [1] Newton-Raphson method. !
|
|---|
| 1342 | ! rmask Land/Sea masking. !
|
|---|
| 1343 | ! T Surface temperature (Celsius). !
|
|---|
| 1344 | ! S Surface salinity (PSS). !
|
|---|
| 1345 | ! TIC Total inorganic carbon (millimol/m3). !
|
|---|
| 1346 | ! TAlk Total alkalinity (milli-equivalents/m3). !
|
|---|
| 1347 | ! pH Best pH guess. !
|
|---|
| 1348 | ! !
|
|---|
| 1349 | ! On Output: !
|
|---|
| 1350 | ! !
|
|---|
| 1351 | ! pCO2 partial pressure of CO2 (ppmv). !
|
|---|
| 1352 | ! !
|
|---|
| 1353 | ! Check Value: (T=24, S=36.6, TIC=2040, TAlk=2390, PO4=0, !
|
|---|
| 1354 | ! SiO3=0, pH=8) !
|
|---|
| 1355 | ! !
|
|---|
| 1356 | ! pcO2= ppmv (DoNewton=0) !
|
|---|
| 1357 | ! pCO2= ppmv (DoNewton=1) !
|
|---|
| 1358 | ! !
|
|---|
| 1359 | ! This subroutine was adapted by Katja Fennel (Nov 2005) from !
|
|---|
| 1360 | ! Zeebe and Wolf-Gladrow (2001). !
|
|---|
| 1361 | ! !
|
|---|
| 1362 | ! Reference: !
|
|---|
| 1363 | ! !
|
|---|
| 1364 | ! Zeebe, R.E. and D. Wolf-Gladrow, 2005: CO2 in Seawater: !
|
|---|
| 1365 | ! Equilibrium, kinetics, isotopes, Elsevier Oceanographic !
|
|---|
| 1366 | ! Series, 65, pp 346. !
|
|---|
| 1367 | ! !
|
|---|
| 1368 | !***********************************************************************
|
|---|
| 1369 | !
|
|---|
| 1370 | USE mod_kinds
|
|---|
| 1371 | !
|
|---|
| 1372 | implicit none
|
|---|
| 1373 | !
|
|---|
| 1374 | ! Imported variable declarations.
|
|---|
| 1375 | !
|
|---|
| 1376 | integer, intent(in) :: LBi, UBi, LBj, UBj, IminS, ImaxS
|
|---|
| 1377 | integer, intent(in) :: Istr, Iend, j, DoNewton
|
|---|
| 1378 | !
|
|---|
| 1379 | # ifdef ASSUMED_SHAPE
|
|---|
| 1380 | # ifdef MASKING
|
|---|
| 1381 | real(r8), intent(in) :: rmask(LBi:,LBj:)
|
|---|
| 1382 | # endif
|
|---|
| 1383 | real(r8), intent(in) :: T(IminS:)
|
|---|
| 1384 | real(r8), intent(in) :: S(IminS:)
|
|---|
| 1385 | real(r8), intent(in) :: TIC(IminS:)
|
|---|
| 1386 | real(r8), intent(in) :: TAlk(IminS:)
|
|---|
| 1387 | real(r8), intent(inout) :: pH(LBi:,LBj:)
|
|---|
| 1388 | # else
|
|---|
| 1389 | # ifdef MASKING
|
|---|
| 1390 | real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj)
|
|---|
| 1391 | # endif
|
|---|
| 1392 | real(r8), intent(in) :: T(IminS:ImaxS)
|
|---|
| 1393 | real(r8), intent(in) :: S(IminS:ImaxS)
|
|---|
| 1394 | real(r8), intent(in) :: TIC(IminS:ImaxS)
|
|---|
| 1395 | real(r8), intent(in) :: TAlk(IminS:ImaxS)
|
|---|
| 1396 | real(r8), intent(inout) :: pH(LBi:UBi,LBj:UBj)
|
|---|
| 1397 | # endif
|
|---|
| 1398 |
|
|---|
| 1399 | real(r8), intent(out) :: pCO2(IminS:ImaxS)
|
|---|
| 1400 | !
|
|---|
| 1401 | ! Local variable declarations.
|
|---|
| 1402 | !
|
|---|
| 1403 | integer, parameter :: InewtonMax = 10
|
|---|
| 1404 | integer, parameter :: IbrackMax = 30
|
|---|
| 1405 |
|
|---|
| 1406 | integer :: Hstep, Ibrack, Inewton, i
|
|---|
| 1407 |
|
|---|
| 1408 | real(r8) :: Tk, centiTk, invTk, logTk
|
|---|
| 1409 | real(r8) :: scl, sqrtS
|
|---|
| 1410 | real(r8) :: borate, alk, dic
|
|---|
| 1411 | real(r8) :: ff, K1, K2, K12, Kb, Kw
|
|---|
| 1412 | real(r8) :: p5, p4, p3, p2, p1, p0
|
|---|
| 1413 | real(r8) :: df, fn, fni(3), ftest
|
|---|
| 1414 | real(r8) :: deltaX, invX, invX2, X, X2, X3
|
|---|
| 1415 | real(r8) :: pH_guess, pH_hi, pH_lo
|
|---|
| 1416 | real(r8) :: X_guess, X_hi, X_lo, X_mid
|
|---|
| 1417 | real(r8) :: CO2star, Htotal, Htotal2
|
|---|
| 1418 | !
|
|---|
| 1419 | !=======================================================================
|
|---|
| 1420 | ! Determine coefficients for surface carbon chemisty. If land/sea
|
|---|
| 1421 | ! masking, compute only on water points.
|
|---|
| 1422 | !=======================================================================
|
|---|
| 1423 | !
|
|---|
| 1424 | I_LOOP: DO i=Istr,Iend
|
|---|
| 1425 | # ifdef MASKING
|
|---|
| 1426 | IF (rmask(i,j).gt.0.0_r8) THEN
|
|---|
| 1427 | # endif
|
|---|
| 1428 | Tk=T(i)+273.15_r8
|
|---|
| 1429 | centiTk=0.01_r8*Tk
|
|---|
| 1430 | invTk=1.0_r8/Tk
|
|---|
| 1431 | logTk=LOG(Tk)
|
|---|
| 1432 | sqrtS=SQRT(S(i))
|
|---|
| 1433 | scl=S(i)/1.80655_r8
|
|---|
| 1434 |
|
|---|
| 1435 | alk= TAlk(i)*0.000001_r8
|
|---|
| 1436 | dic = TIC(i)*0.000001_r8
|
|---|
| 1437 | !
|
|---|
| 1438 | !-----------------------------------------------------------------------
|
|---|
| 1439 | ! Correction term for non-ideality, ff=k0*(1-pH2O). Equation 13 with
|
|---|
| 1440 | ! table 6 values from Weiss and Price (1980, Mar. Chem., 8, 347-359).
|
|---|
| 1441 | !-----------------------------------------------------------------------
|
|---|
| 1442 | !
|
|---|
| 1443 | ff=EXP(-162.8301_r8+ &
|
|---|
| 1444 | & 218.2968_r8/centiTk+ &
|
|---|
| 1445 | & LOG(centiTk)*90.9241_r8- &
|
|---|
| 1446 | & centiTk*centiTk*1.47696_r8+ &
|
|---|
| 1447 | & S(i)*(0.025695_r8- &
|
|---|
| 1448 | & centiTk*(0.025225_r8- &
|
|---|
| 1449 | & centiTk*0.0049867_r8)))
|
|---|
| 1450 | !
|
|---|
| 1451 | !-----------------------------------------------------------------------
|
|---|
| 1452 | ! Compute first (K1) and second (K2) dissociation constant of carboinic
|
|---|
| 1453 | ! acid:
|
|---|
| 1454 | !
|
|---|
| 1455 | ! K1 = [H][HCO3]/[H2CO3]
|
|---|
| 1456 | ! K2 = [H][CO3]/[HCO3]
|
|---|
| 1457 | !
|
|---|
| 1458 | ! From Millero (1995; page 664) using Mehrbach et al. (1973) data on
|
|---|
| 1459 | ! seawater scale.
|
|---|
| 1460 | !-----------------------------------------------------------------------
|
|---|
| 1461 | !
|
|---|
| 1462 | K1=10.0_r8**(62.008_r8- &
|
|---|
| 1463 | & invTk*3670.7_r8- &
|
|---|
| 1464 | & logTk*9.7944_r8+ &
|
|---|
| 1465 | & S(i)*(0.0118_r8- &
|
|---|
| 1466 | & S(i)*0.000116_r8))
|
|---|
| 1467 | K2=10.0_r8**(-4.777_r8- &
|
|---|
| 1468 | & invTk*1394.7_r8+ &
|
|---|
| 1469 | & S(i)*(0.0184_r8- &
|
|---|
| 1470 | & S(i)*0.000118_r8))
|
|---|
| 1471 | !
|
|---|
| 1472 | !-----------------------------------------------------------------------
|
|---|
| 1473 | ! Compute dissociation constant of boric acid, Kb=[H][BO2]/[HBO2].
|
|---|
| 1474 | ! From Millero (1995; page 669) using data from Dickson (1990).
|
|---|
| 1475 | !-----------------------------------------------------------------------
|
|---|
| 1476 | !
|
|---|
| 1477 | Kb=EXP(-invTk*(8966.90_r8+ &
|
|---|
| 1478 | & sqrtS*(2890.53_r8+ &
|
|---|
| 1479 | & sqrtS*(77.942_r8- &
|
|---|
| 1480 | & sqrtS*(1.728_r8- &
|
|---|
| 1481 | & sqrtS*0.0996_r8))))- &
|
|---|
| 1482 | & logTk*(24.4344_r8+ &
|
|---|
| 1483 | & sqrtS*(25.085_r8+ &
|
|---|
| 1484 | & sqrtS*0.2474_r8))+ &
|
|---|
| 1485 | & Tk*(sqrtS*0.053105_r8)+ &
|
|---|
| 1486 | & 148.0248_r8+ &
|
|---|
| 1487 | & sqrtS*(137.1942_r8+ &
|
|---|
| 1488 | & sqrtS*1.62142_r8))
|
|---|
| 1489 | !
|
|---|
| 1490 | !-----------------------------------------------------------------------
|
|---|
| 1491 | ! Compute ion product of whater, Kw = [H][OH].
|
|---|
| 1492 | ! From Millero (1995; page 670) using composite data.
|
|---|
| 1493 | !-----------------------------------------------------------------------
|
|---|
| 1494 | !
|
|---|
| 1495 | Kw=EXP(148.9652_r8- &
|
|---|
| 1496 | & invTk*13847.26_r8- &
|
|---|
| 1497 | & logTk*23.6521_r8- &
|
|---|
| 1498 | & sqrtS*(5.977_r8- &
|
|---|
| 1499 | & invTk*118.67_r8- &
|
|---|
| 1500 | & logTk*1.0495_r8)- &
|
|---|
| 1501 | & S(i)*0.01615_r8)
|
|---|
| 1502 | !
|
|---|
| 1503 | !-----------------------------------------------------------------------
|
|---|
| 1504 | ! Calculate concentrations for borate (Uppstrom, 1974).
|
|---|
| 1505 | !-----------------------------------------------------------------------
|
|---|
| 1506 | !
|
|---|
| 1507 | borate=0.000232_r8*scl/10.811_r8
|
|---|
| 1508 | !
|
|---|
| 1509 | !=======================================================================
|
|---|
| 1510 | ! Iteratively solver for computing hydrogen ions [H+] using either:
|
|---|
| 1511 | !
|
|---|
| 1512 | ! (1) Newton-Raphson method with fixed number of iterations,
|
|---|
| 1513 | ! use previous [H+] as first guess, or
|
|---|
| 1514 | ! (2) bracket and bisection
|
|---|
| 1515 | !=======================================================================
|
|---|
| 1516 | !
|
|---|
| 1517 | ! Solve for h in fifth-order polynomial. First calculate
|
|---|
| 1518 | ! polynomial coefficients.
|
|---|
| 1519 | !
|
|---|
| 1520 | K12 = K1*K2
|
|---|
| 1521 |
|
|---|
| 1522 | p5 = -1.0_r8;
|
|---|
| 1523 | p4 = -alk-Kb-K1;
|
|---|
| 1524 | p3 = dic*K1-alk*(Kb+K1)+Kb*borate+Kw-Kb*K1-K12
|
|---|
| 1525 | p2 = dic*(Kb*K1+2*K12)-alk*(Kb*K1+K12)+Kb*borate*K1 &
|
|---|
| 1526 | & +(Kw*Kb+Kw*K1-Kb*K12)
|
|---|
| 1527 | p1 = 2.0_r8*dic*Kb*K12-alk*Kb*K12+Kb*borate*K12 &
|
|---|
| 1528 | & +Kw*Kb*K1+Kw*K12
|
|---|
| 1529 | p0 = Kw*Kb*K12;
|
|---|
| 1530 | !
|
|---|
| 1531 | ! Set first guess and brackets for [H+] solvers.
|
|---|
| 1532 | !
|
|---|
| 1533 | pH_guess=pH(i,j) ! Newton-Raphson
|
|---|
| 1534 | pH_hi=10.0_r8 ! high bracket/bisection
|
|---|
| 1535 | pH_lo=5.0_r8 ! low bracket/bisection
|
|---|
| 1536 | !
|
|---|
| 1537 | ! Convert to [H+].
|
|---|
| 1538 | !
|
|---|
| 1539 | X_guess=10.0_r8**(-pH_guess)
|
|---|
| 1540 | X_lo=10.0_r8**(-pH_hi)
|
|---|
| 1541 | X_hi=10.0_r8**(-pH_lo)
|
|---|
| 1542 | X_mid=0.5_r8*(X_lo+X_hi)
|
|---|
| 1543 | !
|
|---|
| 1544 | !-----------------------------------------------------------------------
|
|---|
| 1545 | ! Newton-Raphson method.
|
|---|
| 1546 | !-----------------------------------------------------------------------
|
|---|
| 1547 | !
|
|---|
| 1548 | IF (DoNewton.eq.1) THEN
|
|---|
| 1549 | X=X_guess
|
|---|
| 1550 | !
|
|---|
| 1551 | DO Inewton=1,InewtonMax
|
|---|
| 1552 | !
|
|---|
| 1553 | ! Evaluate f([H+]) = p5*x^5+...+p1*x+p0
|
|---|
| 1554 | !
|
|---|
| 1555 | fn=((((p5*X+p4)*X+p3)*X+p2)*X+p1)*X+p0
|
|---|
| 1556 | !
|
|---|
| 1557 | ! Evaluate derivative, df([H+])/dx:
|
|---|
| 1558 | !
|
|---|
| 1559 | ! df= d(fn)/d(X)
|
|---|
| 1560 | !
|
|---|
| 1561 | df=(((5*p5*X+4*p4)*X+3*p3)*X+2*p2)*X+p1
|
|---|
| 1562 | !
|
|---|
| 1563 | ! Evaluate increment in [H+].
|
|---|
| 1564 | !
|
|---|
| 1565 | deltaX=-fn/df
|
|---|
| 1566 | !
|
|---|
| 1567 | ! Update estimate of [H+].
|
|---|
| 1568 | !
|
|---|
| 1569 | X=X+deltaX
|
|---|
| 1570 | END DO
|
|---|
| 1571 | !
|
|---|
| 1572 | !-----------------------------------------------------------------------
|
|---|
| 1573 | ! Bracket and bisection method.
|
|---|
| 1574 | !-----------------------------------------------------------------------
|
|---|
| 1575 | !
|
|---|
| 1576 | ELSE
|
|---|
| 1577 | !
|
|---|
| 1578 | ! If first step, use Bracket and Bisection method with fixed, large
|
|---|
| 1579 | ! number of iterations
|
|---|
| 1580 | !
|
|---|
| 1581 | BRACK_IT: DO Ibrack=1,IbrackMax
|
|---|
| 1582 | DO Hstep=1,3
|
|---|
| 1583 | IF (Hstep.eq.1) X=X_hi
|
|---|
| 1584 | IF (Hstep.eq.2) X=X_lo
|
|---|
| 1585 | IF (Hstep.eq.3) X=X_mid
|
|---|
| 1586 | !
|
|---|
| 1587 | ! Evaluate f([H+]) for bracketing and mid-value cases.
|
|---|
| 1588 | !
|
|---|
| 1589 | fni(Hstep)=((((p5*X+p4)*X+p3)*X+p2)*X+p1)*X+p0
|
|---|
| 1590 | END DO
|
|---|
| 1591 | !
|
|---|
| 1592 | ! Now, bracket solution within two of three.
|
|---|
| 1593 | !
|
|---|
| 1594 | IF (fni(3).eq.0) THEN
|
|---|
| 1595 | EXIT BRACK_IT
|
|---|
| 1596 | ELSE
|
|---|
| 1597 | ftest=fni(1)/fni(3)
|
|---|
| 1598 | IF (ftest.gt.0) THEN
|
|---|
| 1599 | X_hi=X_mid
|
|---|
| 1600 | ELSE
|
|---|
| 1601 | X_lo=X_mid
|
|---|
| 1602 | END IF
|
|---|
| 1603 | X_mid=0.5_r8*(X_lo+X_hi)
|
|---|
| 1604 | END IF
|
|---|
| 1605 | END DO BRACK_IT
|
|---|
| 1606 | !
|
|---|
| 1607 | ! Last iteration gives value.
|
|---|
| 1608 | !
|
|---|
| 1609 | X=X_mid
|
|---|
| 1610 | END IF
|
|---|
| 1611 | !
|
|---|
| 1612 | !-----------------------------------------------------------------------
|
|---|
| 1613 | ! Determine pCO2.
|
|---|
| 1614 | !-----------------------------------------------------------------------
|
|---|
| 1615 | !
|
|---|
| 1616 | ! Total Hydrogen ion concentration, Htotal = [H+].
|
|---|
| 1617 | !
|
|---|
| 1618 | Htotal=X
|
|---|
| 1619 | Htotal2=Htotal*Htotal
|
|---|
| 1620 | !
|
|---|
| 1621 | ! Calculate [CO2*] (mole/m3) as defined in DOE Methods Handbook 1994
|
|---|
| 1622 | ! Version 2, ORNL/CDIAC-74, Dickson and Goyet, Eds. (Chapter 2,
|
|---|
| 1623 | ! page 10, Eq A.49).
|
|---|
| 1624 | !
|
|---|
| 1625 | CO2star=dic*Htotal2/(Htotal2+K1*Htotal+K1*K2)
|
|---|
| 1626 | !
|
|---|
| 1627 | ! Save pH is used again outside this routine.
|
|---|
| 1628 | !
|
|---|
| 1629 | pH(i,j)=-LOG10(Htotal)
|
|---|
| 1630 | !
|
|---|
| 1631 | ! Add two output arguments for storing pCO2surf.
|
|---|
| 1632 | !
|
|---|
| 1633 | pCO2(i)=CO2star*1000000.0_r8/ff
|
|---|
| 1634 |
|
|---|
| 1635 | # ifdef MASKING
|
|---|
| 1636 | ELSE
|
|---|
| 1637 | pH(i,j)=0.0_r8
|
|---|
| 1638 | pCO2(i)=0.0_r8
|
|---|
| 1639 | END IF
|
|---|
| 1640 | # endif
|
|---|
| 1641 |
|
|---|
| 1642 | END DO I_LOOP
|
|---|
| 1643 |
|
|---|
| 1644 | RETURN
|
|---|
| 1645 | END SUBROUTINE pCO2_water_RZ
|
|---|
| 1646 | # else
|
|---|
| 1647 | SUBROUTINE pCO2_water (Istr, Iend, &
|
|---|
| 1648 | & LBi, UBi, LBj, UBj, &
|
|---|
| 1649 | & IminS, ImaxS, j, DoNewton, &
|
|---|
| 1650 | # ifdef MASKING
|
|---|
| 1651 | & rmask, &
|
|---|
| 1652 | # endif
|
|---|
| 1653 | & T, S, TIC, TAlk, PO4, SiO3, pH, pCO2)
|
|---|
| 1654 | !
|
|---|
| 1655 | !***********************************************************************
|
|---|
| 1656 | ! !
|
|---|
| 1657 | ! This routine computes equilibrium partial pressure of CO2 (pCO2) !
|
|---|
| 1658 | ! in the surface seawater. !
|
|---|
| 1659 | ! !
|
|---|
| 1660 | ! On Input: !
|
|---|
| 1661 | ! !
|
|---|
| 1662 | ! Istr Starting tile index in the I-direction. !
|
|---|
| 1663 | ! Iend Ending tile index in the I-direction. !
|
|---|
| 1664 | ! LBi I-dimension lower bound. !
|
|---|
| 1665 | ! UBi I-dimension upper bound. !
|
|---|
| 1666 | ! LBj J-dimension lower bound. !
|
|---|
| 1667 | ! UBj J-dimension upper bound. !
|
|---|
| 1668 | ! IminS I-dimension lower bound for private arrays. !
|
|---|
| 1669 | ! ImaxS I-dimension upper bound for private arrays. !
|
|---|
| 1670 | ! j j-pipelined index. !
|
|---|
| 1671 | ! DoNewton Iteration solver: !
|
|---|
| 1672 | ! [0] Bracket and bisection. !
|
|---|
| 1673 | ! [1] Newton-Raphson method. !
|
|---|
| 1674 | ! rmask Land/Sea masking. !
|
|---|
| 1675 | ! T Surface temperature (Celsius). !
|
|---|
| 1676 | ! S Surface salinity (PSS). !
|
|---|
| 1677 | ! TIC Total inorganic carbon (millimol/m3). !
|
|---|
| 1678 | ! TAlk Total alkalinity (milli-equivalents/m3). !
|
|---|
| 1679 | ! PO4 Inorganic phosphate (millimol/m3). !
|
|---|
| 1680 | ! SiO3 Inorganic silicate (millimol/m3). !
|
|---|
| 1681 | ! pH Best pH guess. !
|
|---|
| 1682 | ! !
|
|---|
| 1683 | ! On Output: !
|
|---|
| 1684 | ! !
|
|---|
| 1685 | ! pCO2 partial pressure of CO2 (ppmv). !
|
|---|
| 1686 | ! !
|
|---|
| 1687 | ! Check Value: (T=24, S=36.6, TIC=2040, TAlk=2390, PO4=0, !
|
|---|
| 1688 | ! SiO3=0, pH=8) !
|
|---|
| 1689 | ! !
|
|---|
| 1690 | ! pcO2=0.35074945E+03 ppmv (DoNewton=0) !
|
|---|
| 1691 | ! pCO2=0.35073560E+03 ppmv (DoNewton=1) !
|
|---|
| 1692 | ! !
|
|---|
| 1693 | ! This subroutine was adapted by Mick Follows (Oct 1999) from OCMIP2 !
|
|---|
| 1694 | ! code CO2CALC. Modified for ROMS by Hernan Arango (Nov 2003). !
|
|---|
| 1695 | ! !
|
|---|
| 1696 | !***********************************************************************
|
|---|
| 1697 | !
|
|---|
| 1698 | USE mod_kinds
|
|---|
| 1699 | !
|
|---|
| 1700 | implicit none
|
|---|
| 1701 | !
|
|---|
| 1702 | ! Imported variable declarations.
|
|---|
| 1703 | !
|
|---|
| 1704 | integer, intent(in) :: LBi, UBi, LBj, UBj, IminS, ImaxS
|
|---|
| 1705 | integer, intent(in) :: Istr, Iend, j, DoNewton
|
|---|
| 1706 | !
|
|---|
| 1707 | # ifdef ASSUMED_SHAPE
|
|---|
| 1708 | # ifdef MASKING
|
|---|
| 1709 | real(r8), intent(in) :: rmask(LBi:,LBj:)
|
|---|
| 1710 | # endif
|
|---|
| 1711 | real(r8), intent(in) :: T(IminS:)
|
|---|
| 1712 | real(r8), intent(in) :: S(IminS:)
|
|---|
| 1713 | real(r8), intent(in) :: TIC(IminS:)
|
|---|
| 1714 | real(r8), intent(in) :: TAlk(IminS:)
|
|---|
| 1715 | real(r8), intent(inout) :: pH(LBi:,LBj:)
|
|---|
| 1716 | # else
|
|---|
| 1717 | # ifdef MASKING
|
|---|
| 1718 | real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj)
|
|---|
| 1719 | # endif
|
|---|
| 1720 | real(r8), intent(in) :: T(IminS:ImaxS)
|
|---|
| 1721 | real(r8), intent(in) :: S(IminS:ImaxS)
|
|---|
| 1722 | real(r8), intent(in) :: TIC(IminS:ImaxS)
|
|---|
| 1723 | real(r8), intent(in) :: TAlk(IminS:ImaxS)
|
|---|
| 1724 | real(r8), intent(inout) :: pH(LBi:UBi,LBj:UBj)
|
|---|
| 1725 | # endif
|
|---|
| 1726 | real(r8), intent(in) :: PO4
|
|---|
| 1727 | real(r8), intent(in) :: SiO3
|
|---|
| 1728 |
|
|---|
| 1729 | real(r8), intent(out) :: pCO2(IminS:ImaxS)
|
|---|
| 1730 | !
|
|---|
| 1731 | ! Local variable declarations.
|
|---|
| 1732 | !
|
|---|
| 1733 | integer, parameter :: InewtonMax = 10
|
|---|
| 1734 | integer, parameter :: IbrackMax = 30
|
|---|
| 1735 |
|
|---|
| 1736 | integer :: Hstep, Ibrack, Inewton, i
|
|---|
| 1737 |
|
|---|
| 1738 | real(r8) :: Tk, centiTk, invTk, logTk
|
|---|
| 1739 | real(r8) :: SO4, scl, sqrtS, sqrtSO4
|
|---|
| 1740 | real(r8) :: alk, dic, phos, sili
|
|---|
| 1741 | real(r8) :: borate, sulfate, fluoride
|
|---|
| 1742 | real(r8) :: ff, K1, K2, K1p, K2p, K3p, Kb, Kf, Ks, Ksi, Kw
|
|---|
| 1743 | real(r8) :: K12, K12p, K123p, invKb, invKs, invKsi
|
|---|
| 1744 | real(r8) :: A, A2, B, B2, C, dA, dB
|
|---|
| 1745 | real(r8) :: df, fn, fni(3), ftest
|
|---|
| 1746 | real(r8) :: deltaX, invX, invX2, X, X2, X3
|
|---|
| 1747 | real(r8) :: pH_guess, pH_hi, pH_lo
|
|---|
| 1748 | real(r8) :: X_guess, X_hi, X_lo, X_mid
|
|---|
| 1749 | real(r8) :: CO2star, Htotal, Htotal2
|
|---|
| 1750 | !
|
|---|
| 1751 | !=======================================================================
|
|---|
| 1752 | ! Determine coefficients for surface carbon chemisty. If land/sea
|
|---|
| 1753 | ! masking, compute only on water points.
|
|---|
| 1754 | !=======================================================================
|
|---|
| 1755 | !
|
|---|
| 1756 | I_LOOP: DO i=Istr,Iend
|
|---|
| 1757 | # ifdef MASKING
|
|---|
| 1758 | IF (rmask(i,j).gt.0.0_r8) THEN
|
|---|
| 1759 | # endif
|
|---|
| 1760 | Tk=T(i)+273.15_r8
|
|---|
| 1761 | centiTk=0.01_r8*Tk
|
|---|
| 1762 | invTk=1.0_r8/Tk
|
|---|
| 1763 | logTk=LOG(Tk)
|
|---|
| 1764 | sqrtS=SQRT(S(i))
|
|---|
| 1765 | SO4=19.924_r8*S(i)/(1000.0_r8-1.005_r8*S(i))
|
|---|
| 1766 | sqrtSO4=SQRT(SO4)
|
|---|
| 1767 | scl=S(i)/1.80655_r8
|
|---|
| 1768 |
|
|---|
| 1769 | alk=TAlk(i)*0.000001_r8
|
|---|
| 1770 | dic=TIC(i)*0.000001_r8
|
|---|
| 1771 | phos=PO4*0.000001_r8
|
|---|
| 1772 | sili=SiO3*0.000001_r8
|
|---|
| 1773 | !
|
|---|
| 1774 | !-----------------------------------------------------------------------
|
|---|
| 1775 | ! Correction term for non-ideality, ff=k0*(1-pH2O). Equation 13 with
|
|---|
| 1776 | ! table 6 values from Weiss and Price (1980, Mar. Chem., 8, 347-359).
|
|---|
| 1777 | !-----------------------------------------------------------------------
|
|---|
| 1778 | !
|
|---|
| 1779 | ff=EXP(-162.8301_r8+ &
|
|---|
| 1780 | & 218.2968_r8/centiTk+ &
|
|---|
| 1781 | & LOG(centiTk)*90.9241_r8- &
|
|---|
| 1782 | & centiTk*centiTk*1.47696_r8+ &
|
|---|
| 1783 | & S(i)*(0.025695_r8- &
|
|---|
| 1784 | & centiTk*(0.025225_r8- &
|
|---|
| 1785 | & centiTk*0.0049867_r8)))
|
|---|
| 1786 | !
|
|---|
| 1787 | !-----------------------------------------------------------------------
|
|---|
| 1788 | ! Compute first (K1) and second (K2) dissociation constant of carboinic
|
|---|
| 1789 | ! acid:
|
|---|
| 1790 | !
|
|---|
| 1791 | ! K1 = [H][HCO3]/[H2CO3]
|
|---|
| 1792 | ! K2 = [H][CO3]/[HCO3]
|
|---|
| 1793 | !
|
|---|
| 1794 | ! From Millero (1995; page 664) using Mehrbach et al. (1973) data on
|
|---|
| 1795 | ! seawater scale.
|
|---|
| 1796 | !-----------------------------------------------------------------------
|
|---|
| 1797 | !
|
|---|
| 1798 | K1=10.0_r8**(62.008_r8- &
|
|---|
| 1799 | & invTk*3670.7_r8- &
|
|---|
| 1800 | & logTk*9.7944_r8+ &
|
|---|
| 1801 | & S(i)*(0.0118_r8- &
|
|---|
| 1802 | & S(i)*0.000116_r8))
|
|---|
| 1803 | K2=10.0_r8**(-4.777_r8- &
|
|---|
| 1804 | & invTk*1394.7_r8+ &
|
|---|
| 1805 | & S(i)*(0.0184_r8- &
|
|---|
| 1806 | & S(i)*0.000118_r8))
|
|---|
| 1807 | !
|
|---|
| 1808 | !-----------------------------------------------------------------------
|
|---|
| 1809 | ! Compute dissociation constant of boric acid, Kb=[H][BO2]/[HBO2].
|
|---|
| 1810 | ! From Millero (1995; page 669) using data from Dickson (1990).
|
|---|
| 1811 | !-----------------------------------------------------------------------
|
|---|
| 1812 | !
|
|---|
| 1813 | Kb=EXP(-invTk*(8966.90_r8+ &
|
|---|
| 1814 | & sqrtS*(2890.53_r8+ &
|
|---|
| 1815 | & sqrtS*(77.942_r8- &
|
|---|
| 1816 | & sqrtS*(1.728_r8- &
|
|---|
| 1817 | & sqrtS*0.0996_r8))))- &
|
|---|
| 1818 | & logTk*(24.4344_r8+ &
|
|---|
| 1819 | & sqrtS*(25.085_r8+ &
|
|---|
| 1820 | & sqrtS*0.2474_r8))+ &
|
|---|
| 1821 | & Tk*(sqrtS*0.053105_r8)+ &
|
|---|
| 1822 | & 148.0248_r8+ &
|
|---|
| 1823 | & sqrtS*(137.1942_r8+ &
|
|---|
| 1824 | & sqrtS*1.62142_r8))
|
|---|
| 1825 | !
|
|---|
| 1826 | !-----------------------------------------------------------------------
|
|---|
| 1827 | ! Compute first (K1p), second (K2p), and third (K3p) dissociation
|
|---|
| 1828 | ! constant of phosphoric acid:
|
|---|
| 1829 | !
|
|---|
| 1830 | ! K1p = [H][H2PO4]/[H3PO4]
|
|---|
| 1831 | ! K2p = [H][HPO4]/[H2PO4]
|
|---|
| 1832 | ! K3p = [H][PO4]/[HPO4]
|
|---|
| 1833 | !
|
|---|
| 1834 | ! From DOE (1994) equations 7.2.20, 7.2.23, and 7.2.26, respectively.
|
|---|
| 1835 | ! With footnote using data from Millero (1974).
|
|---|
| 1836 | !-----------------------------------------------------------------------
|
|---|
| 1837 | !
|
|---|
| 1838 | K1p=EXP(115.525_r8- &
|
|---|
| 1839 | & invTk*4576.752_r8- &
|
|---|
| 1840 | & logTk*18.453_r8+ &
|
|---|
| 1841 | & sqrtS*(0.69171_r8-invTk*106.736_r8)- &
|
|---|
| 1842 | & S(i)*(0.01844_r8+invTk*0.65643_r8))
|
|---|
| 1843 | K2p=EXP(172.0883_r8- &
|
|---|
| 1844 | & invTk*8814.715_r8- &
|
|---|
| 1845 | & logTk*27.927_r8+ &
|
|---|
| 1846 | & sqrtS*(1.3566_r8-invTk*160.340_r8)- &
|
|---|
| 1847 | & S(i)*(0.05778_r8-invTk*0.37335_r8))
|
|---|
| 1848 | K3p=EXP(-18.141_r8- &
|
|---|
| 1849 | & invTk*3070.75_r8+ &
|
|---|
| 1850 | & sqrtS*(2.81197_r8+invTk*17.27039_r8)- &
|
|---|
| 1851 | & S(i)*(0.09984_r8+invTk*44.99486_r8))
|
|---|
| 1852 | !
|
|---|
| 1853 | !-----------------------------------------------------------------------
|
|---|
| 1854 | ! Compute dissociation constant of silica, Ksi=[H][SiO(OH)3]/[Si(OH)4].
|
|---|
| 1855 | ! From Millero (1995; page 671) using data from Yao and Millero (1995).
|
|---|
| 1856 | !-----------------------------------------------------------------------
|
|---|
| 1857 | !
|
|---|
| 1858 | Ksi=EXP(117.385_r8- &
|
|---|
| 1859 | & invTk*8904.2_r8- &
|
|---|
| 1860 | & logTk*19.334_r8+ &
|
|---|
| 1861 | & sqrtSO4*(3.5913_r8-invTk*458.79_r8)- &
|
|---|
| 1862 | & SO4*(1.5998_r8-invTk*188.74_r8- &
|
|---|
| 1863 | & SO4*(0.07871_r8-invTk*12.1652_r8))+ &
|
|---|
| 1864 | & LOG(1.0_r8-0.001005_r8*S(i)))
|
|---|
| 1865 | !
|
|---|
| 1866 | !-----------------------------------------------------------------------
|
|---|
| 1867 | ! Compute ion product of whater, Kw = [H][OH].
|
|---|
| 1868 | ! From Millero (1995; page 670) using composite data.
|
|---|
| 1869 | !-----------------------------------------------------------------------
|
|---|
| 1870 | !
|
|---|
| 1871 | Kw=EXP(148.9652_r8- &
|
|---|
| 1872 | & invTk*13847.26_r8- &
|
|---|
| 1873 | & logTk*23.6521_r8- &
|
|---|
| 1874 | & sqrtS*(5.977_r8- &
|
|---|
| 1875 | & invTk*118.67_r8- &
|
|---|
| 1876 | & logTk*1.0495_r8)- &
|
|---|
| 1877 | & S(i)*0.01615_r8)
|
|---|
| 1878 | !
|
|---|
| 1879 | !------------------------------------------------------------------------
|
|---|
| 1880 | ! Compute salinity constant of hydrogen sulfate, Ks = [H][SO4]/[HSO4].
|
|---|
| 1881 | ! From Dickson (1990, J. chem. Thermodynamics 22, 113)
|
|---|
| 1882 | !------------------------------------------------------------------------
|
|---|
| 1883 | !
|
|---|
| 1884 | Ks=EXP(141.328_r8- &
|
|---|
| 1885 | & invTk*4276.1_r8- &
|
|---|
| 1886 | & logTk*23.093_r8+ &
|
|---|
| 1887 | & sqrtSO4*(324.57_r8-invTk*13856.0_r8-logTk*47.986_r8- &
|
|---|
| 1888 | & SO4*invTk*2698.0_r8)- &
|
|---|
| 1889 | & SO4*(771.54_r8-invTk*35474.0_r8-logTk*114.723_r8- &
|
|---|
| 1890 | & SO4*invTk*1776.0_r8)+ &
|
|---|
| 1891 | & LOG(1.0_r8-0.001005_r8*S(i)))
|
|---|
| 1892 | !
|
|---|
| 1893 | !-----------------------------------------------------------------------
|
|---|
| 1894 | ! Compute stability constant of hydrogen fluorid, Kf = [H][F]/[HF].
|
|---|
| 1895 | ! From Dickson and Riley (1979) -- change pH scale to total.
|
|---|
| 1896 | !-----------------------------------------------------------------------
|
|---|
| 1897 | !
|
|---|
| 1898 | Kf=EXP(-12.641_r8+ &
|
|---|
| 1899 | & invTk*1590.2_r8+ &
|
|---|
| 1900 | & sqrtSO4*1.525_r8+ &
|
|---|
| 1901 | & LOG(1.0_r8-0.001005_r8*S(i))+ &
|
|---|
| 1902 | & LOG(1.0_r8+0.1400_r8*scl/(96.062_r8*Ks)))
|
|---|
| 1903 | !
|
|---|
| 1904 | !-----------------------------------------------------------------------
|
|---|
| 1905 | ! Calculate concentrations for borate (Uppstrom, 1974), sulfate (Morris
|
|---|
| 1906 | ! and Riley, 1966), and fluoride (Riley, 1965).
|
|---|
| 1907 | !-----------------------------------------------------------------------
|
|---|
| 1908 | !
|
|---|
| 1909 | borate=0.000232_r8*scl/10.811_r8
|
|---|
| 1910 | sulfate=0.14_r8*scl/96.062_r8
|
|---|
| 1911 | fluoride=0.000067_r8*scl/18.9984_r8
|
|---|
| 1912 | !
|
|---|
| 1913 | !=======================================================================
|
|---|
| 1914 | ! Iteratively solver for computing hydrogen ions [H+] using either:
|
|---|
| 1915 | !
|
|---|
| 1916 | ! (1) Newton-Raphson method with fixed number of iterations,
|
|---|
| 1917 | ! use previous [H+] as first guess, or
|
|---|
| 1918 | ! (2) bracket and bisection
|
|---|
| 1919 | !=======================================================================
|
|---|
| 1920 | !
|
|---|
| 1921 | ! Set first guess and brackets for [H+] solvers.
|
|---|
| 1922 | !
|
|---|
| 1923 | pH_guess=pH(i,j) ! Newton-Raphson
|
|---|
| 1924 | pH_hi=10.0_r8 ! high bracket/bisection
|
|---|
| 1925 | pH_lo=5.0_r8 ! low bracket/bisection
|
|---|
| 1926 | !
|
|---|
| 1927 | ! Convert to [H+].
|
|---|
| 1928 | !
|
|---|
| 1929 | X_guess=10.0_r8**(-pH_guess)
|
|---|
| 1930 | X_lo=10.0_r8**(-pH_hi)
|
|---|
| 1931 | X_hi=10.0_r8**(-pH_lo)
|
|---|
| 1932 | X_mid=0.5_r8*(X_lo+X_hi)
|
|---|
| 1933 | !
|
|---|
| 1934 | !-----------------------------------------------------------------------
|
|---|
| 1935 | ! Newton-Raphson method.
|
|---|
| 1936 | !-----------------------------------------------------------------------
|
|---|
| 1937 | !
|
|---|
| 1938 | IF (DoNewton.eq.1) THEN
|
|---|
| 1939 | X=X_guess
|
|---|
| 1940 | K12=K1*K2
|
|---|
| 1941 | K12p=K1p*K2p
|
|---|
| 1942 | K123p=K12p*K3p
|
|---|
| 1943 | invKb=1.0_r8/Kb
|
|---|
| 1944 | invKs=1.0_r8/Ks
|
|---|
| 1945 | invKsi=1.0_r8/Ksi
|
|---|
| 1946 | !
|
|---|
| 1947 | DO Inewton=1,InewtonMax
|
|---|
| 1948 | !
|
|---|
| 1949 | ! Set some common combinations of parameters used in the iterative [H+]
|
|---|
| 1950 | ! solver.
|
|---|
| 1951 | !
|
|---|
| 1952 | X2=X*X
|
|---|
| 1953 | X3=X2*X
|
|---|
| 1954 | invX=1.0_r8/X
|
|---|
| 1955 | invX2=1.0_r8/X2
|
|---|
| 1956 |
|
|---|
| 1957 | A=X*(K12p+X*(K1p+X))
|
|---|
| 1958 | B=X*(K1+X)+K12
|
|---|
| 1959 | C=1.0_r8/(1.0_r8+sulfate*invKs)
|
|---|
| 1960 |
|
|---|
| 1961 | A2=A*A
|
|---|
| 1962 | B2=B*B
|
|---|
| 1963 | dA=X*(2.0_r8*K1p+3.0_r8*X)+K12p
|
|---|
| 1964 | dB=2.0_r8*X+K1
|
|---|
| 1965 | !
|
|---|
| 1966 | ! Evaluate f([H+]):
|
|---|
| 1967 | !
|
|---|
| 1968 | ! fn=HCO3+CO3+borate+OH+HPO4+2*PO4+H3PO4+silicate+Hfree+HSO4+HF-TALK
|
|---|
| 1969 | !
|
|---|
| 1970 | fn=dic*K1*(X+2.0_r8*K2)/B+ &
|
|---|
| 1971 | & borate/(1.0_r8+X*invKb)+ &
|
|---|
| 1972 | & Kw*invX+ &
|
|---|
| 1973 | & phos*(K12p*X+2.0_r8*K123p-X3)/A+ &
|
|---|
| 1974 | & sili/(1.0_r8+X*invKsi)- &
|
|---|
| 1975 | & X*C- &
|
|---|
| 1976 | & sulfate/(1.0_r8+Ks*invX*C)- &
|
|---|
| 1977 | & fluoride/(1.0_r8+Kf*invX)- &
|
|---|
| 1978 | & alk
|
|---|
| 1979 | !
|
|---|
| 1980 | ! Evaluate derivative, f(prime)([H+]):
|
|---|
| 1981 | !
|
|---|
| 1982 | ! df= d(fn)/d(X)
|
|---|
| 1983 | !
|
|---|
| 1984 | df=dic*K1*(B-dB*(X+2.0_r8*K2))/B2- &
|
|---|
| 1985 | & borate/(invKb*(1.0+X*invKb)**2)- &
|
|---|
| 1986 | & Kw*invX2+ &
|
|---|
| 1987 | & phos*(A*(K12p-3.0_r8*X2)-dA*(K12p*X+2.0_r8*K123p-X3))/A2-&
|
|---|
| 1988 | & sili/(invKsi*(1.0_r8+X*invKsi)**2)+ &
|
|---|
| 1989 | & C+ &
|
|---|
| 1990 | & sulfate*Ks*C*invX2/((1.0_r8+Ks*invX*C)**2)+ &
|
|---|
| 1991 | & fluoride*Kf*invX2/((1.0_r8+Kf*invX)**2)
|
|---|
| 1992 | !
|
|---|
| 1993 | ! Evaluate increment in [H+].
|
|---|
| 1994 | !
|
|---|
| 1995 | deltaX=-fn/df
|
|---|
| 1996 | !
|
|---|
| 1997 | ! Update estimate of [H+].
|
|---|
| 1998 | !
|
|---|
| 1999 | X=X+deltaX
|
|---|
| 2000 | END DO
|
|---|
| 2001 | !
|
|---|
| 2002 | !-----------------------------------------------------------------------
|
|---|
| 2003 | ! Bracket and bisection method.
|
|---|
| 2004 | !-----------------------------------------------------------------------
|
|---|
| 2005 | !
|
|---|
| 2006 | ELSE
|
|---|
| 2007 | !
|
|---|
| 2008 | ! If first step, use Bracket and Bisection method with fixed, large
|
|---|
| 2009 | ! number of iterations
|
|---|
| 2010 | !
|
|---|
| 2011 | K12=K1*K2
|
|---|
| 2012 | K12p=K1p*K2p
|
|---|
| 2013 | K123p=K12p*K3p
|
|---|
| 2014 | invKb=1.0_r8/Kb
|
|---|
| 2015 | invKs=1.0_r8/Ks
|
|---|
| 2016 | invKsi=1.0_r8/Ksi
|
|---|
| 2017 | !
|
|---|
| 2018 | BRACK_IT: DO Ibrack=1,IbrackMax
|
|---|
| 2019 | DO Hstep=1,3
|
|---|
| 2020 | IF (Hstep.eq.1) X=X_hi
|
|---|
| 2021 | IF (Hstep.eq.2) X=X_lo
|
|---|
| 2022 | IF (Hstep.eq.3) X=X_mid
|
|---|
| 2023 | !
|
|---|
| 2024 | ! Set some common combinations of parameters used in the iterative [H+]
|
|---|
| 2025 | ! solver.
|
|---|
| 2026 | !
|
|---|
| 2027 | X2=X*X
|
|---|
| 2028 | X3=X2*X
|
|---|
| 2029 | invX=1.0_r8/X
|
|---|
| 2030 |
|
|---|
| 2031 | A=X*(K12p+X*(K1p+X))+K123p
|
|---|
| 2032 | B=X*(K1+X)+K12
|
|---|
| 2033 | C=1.0_r8/(1.0_r8+sulfate*invKs)
|
|---|
| 2034 |
|
|---|
| 2035 | A2=A*A
|
|---|
| 2036 | B2=B*B
|
|---|
| 2037 | dA=X*(K1p*2.0_r8+3.0_r8*X2)+K12p
|
|---|
| 2038 | dB=2.0_r8*X+K1
|
|---|
| 2039 | !
|
|---|
| 2040 | ! Evaluate f([H+]) for bracketing and mid-value cases.
|
|---|
| 2041 | !
|
|---|
| 2042 | fni(Hstep)=dic*(K1*X+2.0_r8*K12)/B+ &
|
|---|
| 2043 | & borate/(1.0_r8+X*invKb)+ &
|
|---|
| 2044 | & Kw*invX+ &
|
|---|
| 2045 | & phos*(K12p*X+2.0_r8*K123p-X3)/A+ &
|
|---|
| 2046 | & sili/(1.0_r8+X*invKsi)- &
|
|---|
| 2047 | & X*C- &
|
|---|
| 2048 | & sulfate/(1.0_r8+Ks*invX*C)- &
|
|---|
| 2049 | & fluoride/(1.0_r8+Kf*invX)- &
|
|---|
| 2050 | & alk
|
|---|
| 2051 | END DO
|
|---|
| 2052 | !
|
|---|
| 2053 | ! Now, bracket solution within two of three.
|
|---|
| 2054 | !
|
|---|
| 2055 | IF (fni(3).eq.0.0_r8) THEN
|
|---|
| 2056 | EXIT BRACK_IT
|
|---|
| 2057 | ELSE
|
|---|
| 2058 | ftest=fni(1)/fni(3)
|
|---|
| 2059 | IF (ftest.gt.0.0) THEN
|
|---|
| 2060 | X_hi=X_mid
|
|---|
| 2061 | ELSE
|
|---|
| 2062 | X_lo=X_mid
|
|---|
| 2063 | END IF
|
|---|
| 2064 | X_mid=0.5_r8*(X_lo+X_hi)
|
|---|
| 2065 | END IF
|
|---|
| 2066 | END DO BRACK_IT
|
|---|
| 2067 | !
|
|---|
| 2068 | ! Last iteration gives value.
|
|---|
| 2069 | !
|
|---|
| 2070 | X=X_mid
|
|---|
| 2071 | END IF
|
|---|
| 2072 | !
|
|---|
| 2073 | !-----------------------------------------------------------------------
|
|---|
| 2074 | ! Determine pCO2.
|
|---|
| 2075 | !-----------------------------------------------------------------------
|
|---|
| 2076 | !
|
|---|
| 2077 | ! Total Hydrogen ion concentration, Htotal = [H+].
|
|---|
| 2078 | !
|
|---|
| 2079 | Htotal=X
|
|---|
| 2080 | Htotal2=Htotal*Htotal
|
|---|
| 2081 | !
|
|---|
| 2082 | ! Calculate [CO2*] (mole/m3) as defined in DOE Methods Handbook 1994
|
|---|
| 2083 | ! Version 2, ORNL/CDIAC-74, Dickson and Goyet, Eds. (Chapter 2,
|
|---|
| 2084 | ! page 10, Eq A.49).
|
|---|
| 2085 | !
|
|---|
| 2086 | CO2star=dic*Htotal2/(Htotal2+K1*Htotal+K1*K2)
|
|---|
| 2087 | !
|
|---|
| 2088 | ! Save pH is used again outside this routine.
|
|---|
| 2089 | !
|
|---|
| 2090 | pH(i,j)=-LOG10(Htotal)
|
|---|
| 2091 | !
|
|---|
| 2092 | ! Add two output arguments for storing pCO2surf.
|
|---|
| 2093 | !
|
|---|
| 2094 | pCO2(i)=CO2star*1000000.0_r8/ff
|
|---|
| 2095 |
|
|---|
| 2096 | # ifdef MASKING
|
|---|
| 2097 | ELSE
|
|---|
| 2098 | pH(i,j)=0.0_r8
|
|---|
| 2099 | pCO2(i)=0.0_r8
|
|---|
| 2100 | END IF
|
|---|
| 2101 | # endif
|
|---|
| 2102 |
|
|---|
| 2103 | END DO I_LOOP
|
|---|
| 2104 |
|
|---|
| 2105 | RETURN
|
|---|
| 2106 | END SUBROUTINE pCO2_water
|
|---|
| 2107 | # endif
|
|---|
| 2108 | #endif
|
|---|