| 1 | !
|
|---|
| 2 | ! ROMS/TOMS Standard Input parameters.
|
|---|
| 3 | !
|
|---|
| 4 | !svn $Id$
|
|---|
| 5 | !========================================================= Hernan G. Arango ===
|
|---|
| 6 | ! Copyright (c) 2002-2015 The ROMS/TOMS Group !
|
|---|
| 7 | ! Licensed under a MIT/X style license !
|
|---|
| 8 | ! See License_ROMS.txt !
|
|---|
| 9 | !==============================================================================
|
|---|
| 10 | ! !
|
|---|
| 11 | ! Input parameters can be entered in ANY order, provided that the parameter !
|
|---|
| 12 | ! KEYWORD (usually, upper case) is typed correctly followed by "=" or "==" !
|
|---|
| 13 | ! symbols. Any comment lines are allowed and must begin with an exclamation !
|
|---|
| 14 | ! mark (!) in column one. Comments may appear to the right of a parameter !
|
|---|
| 15 | ! specification to improve documentation. Comments will be ignored during !
|
|---|
| 16 | ! reading. Blank lines are also allowed and ignored. Continuation lines in !
|
|---|
| 17 | ! a parameter specification are allowed and must be preceded by a backslash !
|
|---|
| 18 | ! (\). In some instances, more than one value is required for a parameter. !
|
|---|
| 19 | ! If fewer values are provided, the last value is assigned for the entire !
|
|---|
| 20 | ! parameter array. The multiplication symbol (*), without blank spaces in !
|
|---|
| 21 | ! between, is allowed for a parameter specification. For example, in a two !
|
|---|
| 22 | ! grids nested application: !
|
|---|
| 23 | ! !
|
|---|
| 24 | ! AKT_BAK == 2*1.0d-6 2*5.0d-6 ! m2/s !
|
|---|
| 25 | ! !
|
|---|
| 26 | ! indicates that the first two entries of array AKT_BAK, in fortran column- !
|
|---|
| 27 | ! major order, will have the same value of "1.0d-6" for grid 1, whereas the !
|
|---|
| 28 | ! next two entries will have the same value of "5.0d-6" for grid 2. !
|
|---|
| 29 | ! !
|
|---|
| 30 | ! In multiple levels of nesting and/or multiple connected domains step-ups, !
|
|---|
| 31 | ! "Ngrids" entries are expected for some of these parameters. In such case, !
|
|---|
| 32 | ! the order of the entries for a parameter is extremely important. It must !
|
|---|
| 33 | ! follow the same order (1:Ngrids) as in the state variable declaration. The !
|
|---|
| 34 | ! USER may follow the above guidelines for specifying his/her values. These !
|
|---|
| 35 | ! parameters are marked by "==" plural symbol after the KEYWORD. !
|
|---|
| 36 | ! !
|
|---|
| 37 | ! Multiple NetCDF files are allowed for input field(s). This is useful when !
|
|---|
| 38 | ! splitting input data (climatology, boundary, forcing) time records into !
|
|---|
| 39 | ! several files (say monthly, annual, etc). In this case, each multiple file !
|
|---|
| 40 | ! entry line needs to be ended by the vertical bar (|) symbol. For example: !
|
|---|
| 41 | ! !
|
|---|
| 42 | ! NFFILES == 7 ! number of forcing files !
|
|---|
| 43 | ! !
|
|---|
| 44 | ! FRCNAME == my_tides.nc \ !
|
|---|
| 45 | ! my_lwrad_year1.nc | !
|
|---|
| 46 | ! my_lwrad_year2.nc \ !
|
|---|
| 47 | ! my_swrad_year1.nc | !
|
|---|
| 48 | ! my_swrad_year2.nc \ !
|
|---|
| 49 | ! my_winds_year1.nc | !
|
|---|
| 50 | ! my_winds_year2.nc \ !
|
|---|
| 51 | ! my_Pair_year1.nc | !
|
|---|
| 52 | ! my_Pair_year2.nc \ !
|
|---|
| 53 | ! my_Qair_year1.nc | !
|
|---|
| 54 | ! my_Qair_year2.nc \ !
|
|---|
| 55 | ! my_Tair_year1.nc | !
|
|---|
| 56 | ! my_Tair_year2.nc !
|
|---|
| 57 | ! !
|
|---|
| 58 | ! Notice that NFFILES is 7 and not 13. There are 7 uniquely different fields !
|
|---|
| 59 | ! in the file list, we DO NOT count file entries followed by the vertical !
|
|---|
| 60 | ! bar symbol. This is because multiple file entries are processed in ROMS !
|
|---|
| 61 | ! with derived type structures. !
|
|---|
| 62 | ! !
|
|---|
| 63 | !==============================================================================
|
|---|
| 64 | !
|
|---|
| 65 | ! Application title.
|
|---|
| 66 |
|
|---|
| 67 | TITLE = Lake Jersey nesting test case with top-right refined grid
|
|---|
| 68 |
|
|---|
| 69 | ! C-preprocessing Flag.
|
|---|
| 70 |
|
|---|
| 71 | MyAppCPP = LAKE_JERSEY
|
|---|
| 72 |
|
|---|
| 73 | ! Input variable information file name. This file needs to be processed
|
|---|
| 74 | ! first so all information arrays can be initialized properly.
|
|---|
| 75 |
|
|---|
| 76 | VARNAME = ../../External/varinfo.dat
|
|---|
| 77 |
|
|---|
| 78 | ! Number of nested grids.
|
|---|
| 79 |
|
|---|
| 80 | Ngrids = 1
|
|---|
| 81 |
|
|---|
| 82 | ! Number of grid nesting layers. This parameter is used to allow refinement
|
|---|
| 83 | ! and composite grid combinations.
|
|---|
| 84 |
|
|---|
| 85 | NestLayers = 1
|
|---|
| 86 |
|
|---|
| 87 | ! Number of grids in each nesting layer [1:NestLayers].
|
|---|
| 88 |
|
|---|
| 89 | GridsInLayer = 1
|
|---|
| 90 |
|
|---|
| 91 | ! Grid dimension parameters. See notes below in the Glossary for how to set
|
|---|
| 92 | ! these parameters correctly.
|
|---|
| 93 |
|
|---|
| 94 | Lm == 100 ! Number of I-direction INTERIOR RHO-points
|
|---|
| 95 | Mm == 80 ! Number of J-direction INTERIOR RHO-points
|
|---|
| 96 | N == 8 ! Number of vertical levels
|
|---|
| 97 |
|
|---|
| 98 | Nbed = 1 ! Number of sediment bed layers
|
|---|
| 99 |
|
|---|
| 100 | NAT = 2 ! Number of active tracers (usually, 2)
|
|---|
| 101 | NPT = 0 ! Number of inactive passive tracers
|
|---|
| 102 | NCS = 2 ! Number of cohesive (mud) sediment tracers
|
|---|
| 103 | NNS = 1 ! Number of non-cohesive (sand) sediment tracers
|
|---|
| 104 |
|
|---|
| 105 | ! Domain decomposition parameters for serial, distributed-memory or
|
|---|
| 106 | ! shared-memory configurations used to determine tile horizontal range
|
|---|
| 107 | ! indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids].
|
|---|
| 108 |
|
|---|
| 109 | NtileI == 1 ! I-direction partition
|
|---|
| 110 | NtileJ == 1 ! J-direction partition
|
|---|
| 111 |
|
|---|
| 112 | ! Set lateral boundary conditions keyword. Notice that a value is expected
|
|---|
| 113 | ! for each boundary segment per nested grid for each state variable.
|
|---|
| 114 | !
|
|---|
| 115 | ! Each tracer variable requires [1:4,1:NAT+NPT,Ngrids] values. Otherwise,
|
|---|
| 116 | ! [1:4,1:Ngrids] values are expected for other variables. The boundary
|
|---|
| 117 | ! order is: 1=west, 2=south, 3=east, and 4=north. That is, anticlockwise
|
|---|
| 118 | ! starting at the western boundary.
|
|---|
| 119 | !
|
|---|
| 120 | ! The keyword is case insensitive and usually has three characters. However,
|
|---|
| 121 | ! it is possible to have compound keywords, if applicable. For example, the
|
|---|
| 122 | ! keyword "RadNud" implies radiation boundary condition with nudging. This
|
|---|
| 123 | ! combination is usually used in active/passive radiation conditions.
|
|---|
| 124 | !
|
|---|
| 125 | ! Keyword Lateral Boundary Condition Type
|
|---|
| 126 | !
|
|---|
| 127 | ! Cha Chapman_implicit (free-surface)
|
|---|
| 128 | ! Che Chapman_explicit (free-surface)
|
|---|
| 129 | ! Cla Clamped
|
|---|
| 130 | ! Clo Closed
|
|---|
| 131 | ! Fla Flather (2D momentum) _____N_____ j=Mm
|
|---|
| 132 | ! Gra Gradient | 4 |
|
|---|
| 133 | ! Nes Nested (refinement) | |
|
|---|
| 134 | ! Nud Nudging 1 W E 3
|
|---|
| 135 | ! Per Periodic | |
|
|---|
| 136 | ! Rad Radiation |_____S_____|
|
|---|
| 137 | ! Red Reduced Physics (2D momentum) 2 j=1
|
|---|
| 138 | ! Shc Shchepetkin (2D momentum) i=1 i=Lm
|
|---|
| 139 | !
|
|---|
| 140 | ! W S E N
|
|---|
| 141 | ! e o a o
|
|---|
| 142 | ! s u s r
|
|---|
| 143 | ! t t t t
|
|---|
| 144 | ! h h
|
|---|
| 145 | !
|
|---|
| 146 | ! 1 2 3 4
|
|---|
| 147 |
|
|---|
| 148 | LBC(isFsur) == Clo Clo Clo Clo ! free-surface
|
|---|
| 149 | LBC(isUbar) == Clo Clo Clo Clo ! 2D U-momentum
|
|---|
| 150 | LBC(isVbar) == Clo Clo Clo Clo ! 2D V-momentum
|
|---|
| 151 | LBC(isUvel) == Clo Clo Clo Clo ! 3D U-momentum
|
|---|
| 152 | LBC(isVvel) == Clo Clo Clo Clo ! 3D V-momentum
|
|---|
| 153 | LBC(isMtke) == Clo Clo Clo Clo ! mixing TKE
|
|---|
| 154 |
|
|---|
| 155 | LBC(isTvar) == Clo Clo Clo Clo \ ! temperature
|
|---|
| 156 | Clo Clo Clo Clo ! salinity
|
|---|
| 157 |
|
|---|
| 158 | ! Adjoint-based algorithms can have different lateral boundary
|
|---|
| 159 | ! conditions keywords.
|
|---|
| 160 |
|
|---|
| 161 | ad_LBC(isFsur) == Clo Clo Clo Clo ! free-surface
|
|---|
| 162 | ad_LBC(isUbar) == Clo Clo Clo Clo ! 2D U-momentum
|
|---|
| 163 | ad_LBC(isVbar) == Clo Clo Clo Clo ! 2D V-momentum
|
|---|
| 164 | ad_LBC(isUvel) == Clo Clo Clo Clo ! 3D U-momentum
|
|---|
| 165 | ad_LBC(isVvel) == Clo Clo Clo Clo ! 3D V-momentum
|
|---|
| 166 | ad_LBC(isMtke) == Clo Clo Clo Clo ! mixing TKE
|
|---|
| 167 |
|
|---|
| 168 | ad_LBC(isTvar) == Clo Clo Clo Clo \ ! temperature
|
|---|
| 169 | Clo Clo Clo Clo ! salinity
|
|---|
| 170 |
|
|---|
| 171 | ! Set lateral open boundary edge volume conservation switch for
|
|---|
| 172 | ! nonlinear model and adjoint-based algorithms. Usually activated
|
|---|
| 173 | ! with radiation boundary conditions to enforce global mass
|
|---|
| 174 | ! conservation, except if tidal forcing is enabled. [1:Ngrids].
|
|---|
| 175 |
|
|---|
| 176 | VolCons(west) == F ! western boundary
|
|---|
| 177 | VolCons(east) == F ! eastern boundary
|
|---|
| 178 | VolCons(south) == F ! southern boundary
|
|---|
| 179 | VolCons(north) == F ! northern boundary
|
|---|
| 180 |
|
|---|
| 181 | ad_VolCons(west) == F ! western boundary
|
|---|
| 182 | ad_VolCons(east) == F ! eastern boundary
|
|---|
| 183 | ad_VolCons(south) == F ! southern boundary
|
|---|
| 184 | ad_VolCons(north) == F ! northern boundary
|
|---|
| 185 |
|
|---|
| 186 | ! Time-Stepping parameters.
|
|---|
| 187 |
|
|---|
| 188 | NTIMES == 1440
|
|---|
| 189 | DT == 120.0d0
|
|---|
| 190 | NDTFAST == 30
|
|---|
| 191 |
|
|---|
| 192 | ! Model iteration loops parameters.
|
|---|
| 193 |
|
|---|
| 194 | ERstr = 1
|
|---|
| 195 | ERend = 1
|
|---|
| 196 | Nouter = 1
|
|---|
| 197 | Ninner = 1
|
|---|
| 198 | Nintervals = 1
|
|---|
| 199 |
|
|---|
| 200 | ! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
|
|---|
| 201 | ! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
|
|---|
| 202 | ! analysis. NCV must be greater than NEV (see documentation below).
|
|---|
| 203 |
|
|---|
| 204 | NEV = 2 ! Number of eigenvalues
|
|---|
| 205 | NCV = 10 ! Number of eigenvectors
|
|---|
| 206 |
|
|---|
| 207 | ! Input/Output parameters.
|
|---|
| 208 |
|
|---|
| 209 | NRREC == 0
|
|---|
| 210 | LcycleRST == T
|
|---|
| 211 | NRST == 60
|
|---|
| 212 | NSTA == 1
|
|---|
| 213 | NFLT == 1
|
|---|
| 214 | NINFO == 1
|
|---|
| 215 |
|
|---|
| 216 | ! Output history, average, diagnostic files parameters.
|
|---|
| 217 |
|
|---|
| 218 | LDEFOUT == T
|
|---|
| 219 | NHIS == 15
|
|---|
| 220 | NDEFHIS == 0
|
|---|
| 221 | NTSAVG == 1
|
|---|
| 222 | NAVG == 720
|
|---|
| 223 | NDEFAVG == 0
|
|---|
| 224 | NTSDIA == 1
|
|---|
| 225 | NDIA == 60
|
|---|
| 226 | NDEFDIA == 0
|
|---|
| 227 |
|
|---|
| 228 | ! Output tangent linear and adjoint models parameters.
|
|---|
| 229 |
|
|---|
| 230 | LcycleTLM == F
|
|---|
| 231 | NTLM == 60
|
|---|
| 232 | NDEFTLM == 0
|
|---|
| 233 | LcycleADJ == F
|
|---|
| 234 | NADJ == 60
|
|---|
| 235 | NDEFADJ == 0
|
|---|
| 236 | NSFF == 60
|
|---|
| 237 | NOBC == 60
|
|---|
| 238 |
|
|---|
| 239 | ! GST output and check pointing restart parameters.
|
|---|
| 240 |
|
|---|
| 241 | LmultiGST = F ! one eigenvector per file
|
|---|
| 242 | LrstGST = F ! GST restart switch
|
|---|
| 243 | MaxIterGST = 500 ! maximum number of iterations
|
|---|
| 244 | NGST = 10 ! check pointing interval
|
|---|
| 245 |
|
|---|
| 246 | ! Relative accuracy of the Ritz values computed in the GST analysis.
|
|---|
| 247 |
|
|---|
| 248 | Ritz_tol = 1.0d-15
|
|---|
| 249 |
|
|---|
| 250 | ! Harmonic/biharmonic horizontal diffusion of tracer for nonlinear model
|
|---|
| 251 | ! and adjoint-based algorithms: [1:NAT+NPT,Ngrids].
|
|---|
| 252 |
|
|---|
| 253 | TNU2 == 2*0.0d0 ! m2/s
|
|---|
| 254 | TNU4 == 2*0.0d0 ! m4/s
|
|---|
| 255 |
|
|---|
| 256 | ad_TNU2 == 2*0.0d0 ! m2/s
|
|---|
| 257 | ad_TNU4 == 2*0.0d0 ! m4/s
|
|---|
| 258 |
|
|---|
| 259 | ! Harmonic/biharmonic, horizontal viscosity coefficient for nonlinear model
|
|---|
| 260 | ! and adjoint-based algorithms: [Ngrids].
|
|---|
| 261 |
|
|---|
| 262 | VISC2 == 0.0d0 ! m2/s
|
|---|
| 263 | VISC4 == 0.0d0 ! m4/s
|
|---|
| 264 |
|
|---|
| 265 | ad_VISC2 == 0.0d0 ! m2/s
|
|---|
| 266 | ad_VISC4 == 0.0d0 ! m4/s
|
|---|
| 267 |
|
|---|
| 268 | ! Logical switches (TRUE/FALSE) to increase/decrease horizontal viscosity
|
|---|
| 269 | ! and/or diffusivity in specific areas of the application domain (like
|
|---|
| 270 | ! sponge areas) for the desired application grid.
|
|---|
| 271 |
|
|---|
| 272 | LuvSponge == F ! horizontal momentum
|
|---|
| 273 | LtracerSponge == F F ! temperature, salinity, inert
|
|---|
| 274 |
|
|---|
| 275 | ! Vertical mixing coefficients for tracers in nonlinear model and
|
|---|
| 276 | ! basic state scale factor in adjoint-based algorithms: [1:NAT+NPT,Ngrids]
|
|---|
| 277 |
|
|---|
| 278 | AKT_BAK == 2*5.0d-6 ! m2/s
|
|---|
| 279 |
|
|---|
| 280 | ad_AKT_fac == 2*1.0d0 ! nondimensional
|
|---|
| 281 |
|
|---|
| 282 | ! Vertical mixing coefficient for momentum for nonlinear model and
|
|---|
| 283 | ! basic state scale factor in adjoint-based algorithms: [Ngrids].
|
|---|
| 284 |
|
|---|
| 285 | AKV_BAK == 5.0d-5 ! m2/s
|
|---|
| 286 |
|
|---|
| 287 | ad_AKV_fac == 1.0d0 ! nondimensional
|
|---|
| 288 |
|
|---|
| 289 | ! Turbulent closure parameters.
|
|---|
| 290 |
|
|---|
| 291 | AKK_BAK == 5.0d-6 ! m2/s
|
|---|
| 292 | AKP_BAK == 5.0d-6 ! m2/s
|
|---|
| 293 | TKENU2 == 0.0d0 ! m2/s
|
|---|
| 294 | TKENU4 == 0.0d0 ! m4/s
|
|---|
| 295 |
|
|---|
| 296 | ! Generic length-scale turbulence closure parameters.
|
|---|
| 297 |
|
|---|
| 298 | GLS_P == 0.0d0 ! k-kl
|
|---|
| 299 | GLS_M == 1.0d0
|
|---|
| 300 | GLS_N == 1.0d0
|
|---|
| 301 | GLS_Kmin == 5.0d-06
|
|---|
| 302 | GLS_Pmin == 5.0d-06
|
|---|
| 303 |
|
|---|
| 304 | GLS_CMU0 == 0.5544d0
|
|---|
| 305 | GLS_C1 == 0.9d0
|
|---|
| 306 | GLS_C2 == 0.52d0
|
|---|
| 307 | GLS_C3M == 2.5d0
|
|---|
| 308 | GLS_C3P == 1.0d0
|
|---|
| 309 | GLS_SIGK == 1.96d0
|
|---|
| 310 | GLS_SIGP == 1.96d0
|
|---|
| 311 |
|
|---|
| 312 | ! Constants used in surface turbulent kinetic energy flux computation.
|
|---|
| 313 |
|
|---|
| 314 | CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
|
|---|
| 315 | ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
|
|---|
| 316 | SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
|
|---|
| 317 | CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking
|
|---|
| 318 |
|
|---|
| 319 | ! Constants used in momentum stress computation.
|
|---|
| 320 |
|
|---|
| 321 | RDRG == 3.0d-04 ! m/s
|
|---|
| 322 | RDRG2 == 3.0d-03 ! nondimensional
|
|---|
| 323 | Zob == 0.015d0 ! m
|
|---|
| 324 | Zos == 0.02d0 ! m
|
|---|
| 325 |
|
|---|
| 326 | ! Height (m) of atmospheric measurements for Bulk fluxes parameterization.
|
|---|
| 327 |
|
|---|
| 328 | BLK_ZQ == 10.0d0 ! air humidity
|
|---|
| 329 | BLK_ZT == 10.0d0 ! air temperature
|
|---|
| 330 | BLK_ZW == 10.0d0 ! winds
|
|---|
| 331 |
|
|---|
| 332 | ! Minimum depth for wetting and drying.
|
|---|
| 333 |
|
|---|
| 334 | DCRIT == 0.10d0 ! m
|
|---|
| 335 |
|
|---|
| 336 | ! Various parameters.
|
|---|
| 337 |
|
|---|
| 338 | WTYPE == 1
|
|---|
| 339 | LEVSFRC == 8
|
|---|
| 340 | LEVBFRC == 1
|
|---|
| 341 |
|
|---|
| 342 | ! Set vertical, terrain-following coordinates transformation equation and
|
|---|
| 343 | ! stretching function (see below for details), [1:Ngrids].
|
|---|
| 344 |
|
|---|
| 345 | Vtransform == 1 ! transformation equation
|
|---|
| 346 | Vstretching == 1 ! stretching function
|
|---|
| 347 |
|
|---|
| 348 | ! Vertical S-coordinates parameters (see below for details), [1:Ngrids].
|
|---|
| 349 |
|
|---|
| 350 | THETA_S == 1.0d0 ! surface stretching parameter
|
|---|
| 351 | THETA_B == 1.0d0 ! bottom stretching parameter
|
|---|
| 352 | TCLINE == 10.0d0 ! critical depth (m)
|
|---|
| 353 |
|
|---|
| 354 | ! Mean Density and Brunt-Vaisala frequency.
|
|---|
| 355 |
|
|---|
| 356 | RHO0 = 1025.0d0 ! kg/m3
|
|---|
| 357 | BVF_BAK = 1.0d-5 ! 1/s2
|
|---|
| 358 |
|
|---|
| 359 | ! Time-stamp assigned for model initialization, reference time
|
|---|
| 360 | ! origin for tidal forcing, and model reference time for output
|
|---|
| 361 | ! NetCDF units attribute.
|
|---|
| 362 |
|
|---|
| 363 | DSTART = 0.0d0 ! days
|
|---|
| 364 | TIDE_START = 0.0d0 ! days
|
|---|
| 365 | TIME_REF = 0.0d0 ! yyyymmdd.dd
|
|---|
| 366 |
|
|---|
| 367 | ! Nudging/relaxation time scales, inverse scales will be computed
|
|---|
| 368 | ! internally, [1:Ngrids].
|
|---|
| 369 |
|
|---|
| 370 | TNUDG == 2*0.0d0 ! days
|
|---|
| 371 | ZNUDG == 0.0d0 ! days
|
|---|
| 372 | M2NUDG == 0.0d0 ! days
|
|---|
| 373 | M3NUDG == 0.0d0 ! days
|
|---|
| 374 |
|
|---|
| 375 | ! Factor between passive (outflow) and active (inflow) open boundary
|
|---|
| 376 | ! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
|
|---|
| 377 | ! than on outflow (recommended).
|
|---|
| 378 |
|
|---|
| 379 | OBCFAC == 0.0d0 ! nondimensional
|
|---|
| 380 |
|
|---|
| 381 | ! Linear equation of State parameters:
|
|---|
| 382 |
|
|---|
| 383 | R0 == 1027.0d0 ! kg/m3
|
|---|
| 384 | T0 == 10.0d0 ! Celsius
|
|---|
| 385 | S0 == 30.0d0 ! nondimensional
|
|---|
| 386 | TCOEF == 1.7d-4 ! 1/Celsius
|
|---|
| 387 | SCOEF == 7.6d-4 ! nondimensional
|
|---|
| 388 |
|
|---|
| 389 | ! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)
|
|---|
| 390 |
|
|---|
| 391 | GAMMA2 == 1.0d0
|
|---|
| 392 |
|
|---|
| 393 | ! Logical switches (TRUE/FALSE) to activate horizontal momentum transport
|
|---|
| 394 | ! point Sources/Sinks (like river runoff transport) and mass point
|
|---|
| 395 | ! Sources/Sinks (like volume vertical influx), [1:Ngrids].
|
|---|
| 396 |
|
|---|
| 397 | LuvSrc == F ! horizontal momentum transport
|
|---|
| 398 | LwSrc == F ! volume vertical influx
|
|---|
| 399 |
|
|---|
| 400 | ! Logical switches (TRUE/FALSE) to activate tracers point Sources/Sinks
|
|---|
| 401 | ! (like river runoff) and to specify which tracer variables to consider:
|
|---|
| 402 | ! [1:NAT+NPT,Ngrids]. See glossary below for details.
|
|---|
| 403 |
|
|---|
| 404 | LtracerSrc == 2*F ! temperature, salinity, inert
|
|---|
| 405 |
|
|---|
| 406 | ! Logical switches (TRUE/FALSE) to read and process climatology fields.
|
|---|
| 407 | ! See glossary below for details.
|
|---|
| 408 |
|
|---|
| 409 | LsshCLM == F ! sea-surface height
|
|---|
| 410 | Lm2CLM == F ! 2D momentum
|
|---|
| 411 | Lm3CLM == F ! 3D momentum
|
|---|
| 412 |
|
|---|
| 413 | LtracerCLM == F F ! temperature, salinity, inert
|
|---|
| 414 |
|
|---|
| 415 | ! Logical switches (TRUE/FALSE) to nudge the desired climatology field(s).
|
|---|
| 416 | ! If not analytical climatology fields, users need to turn ON the logical
|
|---|
| 417 | ! switches above to process the fields from the climatology NetCDF file
|
|---|
| 418 | ! that are needed for nudging. See glossary below for details.
|
|---|
| 419 |
|
|---|
| 420 | LnudgeM2CLM == F ! 2D momentum
|
|---|
| 421 | LnudgeM3CLM == F ! 3D momentum
|
|---|
| 422 |
|
|---|
| 423 | LnudgeTCLM == F F ! temperature, salinity, inert
|
|---|
| 424 |
|
|---|
| 425 | ! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
|
|---|
| 426 | ! DstrS must be less or equal to DendS. If both values are zero, their
|
|---|
| 427 | ! values are reset internally to the full range of the adjoint integration.
|
|---|
| 428 |
|
|---|
| 429 | DstrS == 0.0d0 ! starting day
|
|---|
| 430 | DendS == 0.0d0 ! ending day
|
|---|
| 431 |
|
|---|
| 432 | ! Starting and ending vertical levels of the 3D adjoint state variables
|
|---|
| 433 | ! whose sensitivity is required.
|
|---|
| 434 |
|
|---|
| 435 | KstrS == 1 ! starting level
|
|---|
| 436 | KendS == 8 ! ending level
|
|---|
| 437 |
|
|---|
| 438 | ! Logical switches (TRUE/FALSE) to specify the adjoint state variables
|
|---|
| 439 | ! whose sensitivity is required.
|
|---|
| 440 |
|
|---|
| 441 | Lstate(isFsur) == F ! free-surface
|
|---|
| 442 | Lstate(isUbar) == F ! 2D U-momentum
|
|---|
| 443 | Lstate(isVbar) == F ! 2D V-momentum
|
|---|
| 444 | Lstate(isUvel) == F ! 3D U-momentum
|
|---|
| 445 | Lstate(isVvel) == F ! 3D V-momentum
|
|---|
| 446 |
|
|---|
| 447 | Lstate(isTvar) == 2*F ! NT tracers
|
|---|
| 448 |
|
|---|
| 449 | ! Logical switches (TRUE/FALSE) to specify the state variables for
|
|---|
| 450 | ! which Forcing Singular Vectors or Stochastic Optimals is required.
|
|---|
| 451 |
|
|---|
| 452 | Fstate(isFsur) == F ! free-surface
|
|---|
| 453 | Fstate(isUbar) == F ! 2D U-momentum
|
|---|
| 454 | Fstate(isVbar) == F ! 2D V-momentum
|
|---|
| 455 | Fstate(isUvel) == F ! 3D U-momentum
|
|---|
| 456 | Fstate(isVvel) == F ! 3D V-momentum
|
|---|
| 457 | Fstate(isTvar) == 2*F ! NT tracers
|
|---|
| 458 |
|
|---|
| 459 | Fstate(isUstr) == T ! surface U-stress
|
|---|
| 460 | Fstate(isVstr) == T ! surface V-stress
|
|---|
| 461 | Fstate(isTsur) == 2*F ! NT surface tracers flux
|
|---|
| 462 |
|
|---|
| 463 | ! Stochastic Optimals time decorrelation scale (days) assumed for
|
|---|
| 464 | ! red noise processes.
|
|---|
| 465 |
|
|---|
| 466 | SO_decay == 2.0d0 ! days
|
|---|
| 467 |
|
|---|
| 468 | ! Stochastic Optimals surface forcing standard deviation for
|
|---|
| 469 | ! dimensionalization.
|
|---|
| 470 |
|
|---|
| 471 | SO_sdev(isFsur) == 1.0d0 ! free-surface
|
|---|
| 472 | SO_sdev(isUbar) == 1.0d0 ! 2D U-momentum
|
|---|
| 473 | SO_sdev(isVbar) == 1.0d0 ! 2D V-momentum
|
|---|
| 474 | SO_sdev(isUvel) == 1.0d0 ! 3D U-momentum
|
|---|
| 475 | SO_sdev(isVvel) == 1.0d0 ! 3D V-momentum
|
|---|
| 476 | SO_sdev(isTvar) == 2*1.0d0 ! NT tracers
|
|---|
| 477 |
|
|---|
| 478 | SO_sdev(isUstr) == 1.0d0 ! surface U-stress
|
|---|
| 479 | SO_sdev(isVstr) == 1.0d0 ! surface V-stress
|
|---|
| 480 | SO_sdev(isTsur) == 2*1.0d0 ! NT surface tracers flux
|
|---|
| 481 |
|
|---|
| 482 | ! Logical switches (TRUE/FALSE) to activate writing of fields into
|
|---|
| 483 | ! HISTORY output file.
|
|---|
| 484 |
|
|---|
| 485 | Hout(idUvel) == T ! u 3D U-velocity
|
|---|
| 486 | Hout(idVvel) == T ! v 3D V-velocity
|
|---|
| 487 | Hout(idu3dE) == F ! u_eastward 3D U-eastward at RHO-points
|
|---|
| 488 | Hout(idv3dN) == F ! v_northward 3D V-northward at RHO-points
|
|---|
| 489 | Hout(idWvel) == T ! w 3D W-velocity
|
|---|
| 490 | Hout(idOvel) == T ! omega omega vertical velocity
|
|---|
| 491 | Hout(idUbar) == T ! ubar 2D U-velocity
|
|---|
| 492 | Hout(idVbar) == T ! vbar 2D V-velocity
|
|---|
| 493 | Hout(idu2dE) == F ! ubar_eastward 2D U-eastward at RHO-points
|
|---|
| 494 | Hout(idv2dN) == F ! vbar_northward 2D V-northward at RHO-points
|
|---|
| 495 | Hout(idFsur) == T ! zeta free-surface
|
|---|
| 496 | Hout(idBath) == F ! bath time-dependent bathymetry
|
|---|
| 497 |
|
|---|
| 498 | Hout(idTvar) == 2*T ! temp, salt temperature and salinity
|
|---|
| 499 |
|
|---|
| 500 | Hout(idUsms) == F ! sustr surface U-stress
|
|---|
| 501 | Hout(idVsms) == F ! svstr surface V-stress
|
|---|
| 502 | Hout(idUbms) == F ! bustr bottom U-stress
|
|---|
| 503 | Hout(idVbms) == F ! bvstr bottom V-stress
|
|---|
| 504 |
|
|---|
| 505 | Hout(idUbrs) == F ! bustrc bottom U-current stress
|
|---|
| 506 | Hout(idVbrs) == F ! bvstrc bottom V-current stress
|
|---|
| 507 | Hout(idUbws) == F ! bustrw bottom U-wave stress
|
|---|
| 508 | Hout(idVbws) == F ! bvstrw bottom V-wave stress
|
|---|
| 509 | Hout(idUbcs) == F ! bustrcwmax bottom max wave-current U-stress
|
|---|
| 510 | Hout(idVbcs) == F ! bvstrcwmax bottom max wave-current V-stress
|
|---|
| 511 |
|
|---|
| 512 | Hout(idUbot) == F ! Ubot bed wave orbital U-velocity
|
|---|
| 513 | Hout(idVbot) == F ! Vbot bed wave orbital V-velocity
|
|---|
| 514 | Hout(idUbur) == F ! Ur bottom U-velocity above bed
|
|---|
| 515 | Hout(idVbvr) == F ! Vr bottom V-velocity above bed
|
|---|
| 516 |
|
|---|
| 517 | Hout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
|
|---|
| 518 | Hout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
|
|---|
| 519 | Hout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
|
|---|
| 520 | Hout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
|
|---|
| 521 | Hout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
|
|---|
| 522 | Hout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
|
|---|
| 523 | Hout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity
|
|---|
| 524 |
|
|---|
| 525 | Hout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
|
|---|
| 526 | Hout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
|
|---|
| 527 | Hout(idW3yy) == F ! Syy 3D radiation stress, Syy component
|
|---|
| 528 | Hout(idW3zx) == F ! Szx 3D radiation stress, Szx component
|
|---|
| 529 | Hout(idW3zy) == F ! Szy 3D radiation stress, Szy component
|
|---|
| 530 | Hout(idU3rs) == F ! u_Rstress 3D U-radiation stress
|
|---|
| 531 | Hout(idV3rs) == F ! v_Rstress 3D V-radiation stress
|
|---|
| 532 | Hout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
|
|---|
| 533 | Hout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity
|
|---|
| 534 |
|
|---|
| 535 | Hout(idWamp) == F ! Hwave wave height
|
|---|
| 536 | Hout(idWlen) == F ! Lwave wave length
|
|---|
| 537 | Hout(idWdir) == F ! Dwave wave direction
|
|---|
| 538 | Hout(idWptp) == F ! Pwave_top wave surface period
|
|---|
| 539 | Hout(idWpbt) == F ! Pwave_bot wave bottom period
|
|---|
| 540 | Hout(idWorb) == F ! Ub_swan wave bottom orbital velocity
|
|---|
| 541 | Hout(idWdis) == F ! Wave_dissip wave dissipation
|
|---|
| 542 |
|
|---|
| 543 | Hout(idPair) == F ! Pair surface air pressure
|
|---|
| 544 | Hout(idUair) == F ! Uair surface U-wind component
|
|---|
| 545 | Hout(idVair) == F ! Vair surface V-wind component
|
|---|
| 546 |
|
|---|
| 547 | Hout(idTsur) == 2*F ! shflux, ssflux surface net heat and salt flux
|
|---|
| 548 | Hout(idLhea) == F ! latent latent heat flux
|
|---|
| 549 | Hout(idShea) == F ! sensible sensible heat flux
|
|---|
| 550 | Hout(idLrad) == F ! lwrad longwave radiation flux
|
|---|
| 551 | Hout(idSrad) == F ! swrad shortwave radiation flux
|
|---|
| 552 | Hout(idEmPf) == F ! EminusP E-P flux
|
|---|
| 553 | Hout(idevap) == F ! evaporation evaporation rate
|
|---|
| 554 | Hout(idrain) == F ! rain precipitation rate
|
|---|
| 555 |
|
|---|
| 556 | Hout(idDano) == F ! rho density anomaly
|
|---|
| 557 | Hout(idVvis) == F ! AKv vertical viscosity
|
|---|
| 558 | Hout(idTdif) == F ! AKt vertical T-diffusion
|
|---|
| 559 | Hout(idSdif) == F ! AKs vertical Salinity diffusion
|
|---|
| 560 | Hout(idHsbl) == F ! Hsbl depth of surface boundary layer
|
|---|
| 561 | Hout(idHbbl) == F ! Hbbl depth of bottom boundary layer
|
|---|
| 562 | Hout(idMtke) == F ! tke turbulent kinetic energy
|
|---|
| 563 | Hout(idMtls) == F ! gls turbulent length scale
|
|---|
| 564 |
|
|---|
| 565 | ! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
|
|---|
| 566 | ! tracers other than biological and sediment tracers. An inert passive tracer
|
|---|
| 567 | ! is one that it is only advected and diffused. Other processes are ignored.
|
|---|
| 568 | ! These tracers include, for example, dyes, pollutants, oil spills, etc.
|
|---|
| 569 | ! NPT values are expected. However, these switches can be activated using
|
|---|
| 570 | ! compact parameter specification.
|
|---|
| 571 |
|
|---|
| 572 | Hout(inert) == T ! dye_01, ... inert passive tracers
|
|---|
| 573 |
|
|---|
| 574 | ! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
|
|---|
| 575 | ! layer properties into HISTORY output file. Currently, MBOTP properties
|
|---|
| 576 | ! are expected for the bottom boundary layer and/or sediment models:
|
|---|
| 577 | !
|
|---|
| 578 | ! idBott( 1=isd50) grain_diameter mean grain diameter
|
|---|
| 579 | ! idBott( 2=idens) grain_density mean grain density
|
|---|
| 580 | ! idBott( 3=iwsed) settling_vel mean settling velocity
|
|---|
| 581 | ! idBott( 4=itauc) erosion_stress critical erosion stress
|
|---|
| 582 | ! idBott( 5=irlen) ripple_length ripple length
|
|---|
| 583 | ! idBott( 6=irhgt) ripple_height ripple height
|
|---|
| 584 | ! idBott( 7=ibwav) bed_wave_amp wave excursion amplitude
|
|---|
| 585 | ! idBott( 8=izdef) Zo_def default bottom roughness
|
|---|
| 586 | ! idBott( 9=izapp) Zo_app apparent bottom roughness
|
|---|
| 587 | ! idBott(10=izNik) Zo_Nik Nikuradse bottom roughness
|
|---|
| 588 | ! idBott(11=izbio) Zo_bio biological bottom roughness
|
|---|
| 589 | ! idBott(12=izbfm) Zo_bedform bed form bottom roughness
|
|---|
| 590 | ! idBott(13=izbld) Zo_bedload bed load bottom roughness
|
|---|
| 591 | ! idBott(14=izwbl) Zo_wbl wave bottom roughness
|
|---|
| 592 | ! idBott(15=iactv) active_layer_thickness active layer thickness
|
|---|
| 593 | ! idBott(16=ishgt) saltation saltation height
|
|---|
| 594 | !
|
|---|
| 595 | ! 1 1 1 1 1 1 1
|
|---|
| 596 | ! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
|
|---|
| 597 |
|
|---|
| 598 | Hout(idBott) == T T T T T T T T T F F F F F F F \
|
|---|
| 599 | T T T T T T T T T F F F F F F F
|
|---|
| 600 |
|
|---|
| 601 | ! Logical switches (TRUE/FALSE) to activate writing of time-averaged
|
|---|
| 602 | ! fields into AVERAGE output file.
|
|---|
| 603 |
|
|---|
| 604 | Aout(idUvel) == T ! u 3D U-velocity
|
|---|
| 605 | Aout(idVvel) == T ! v 3D V-velocity
|
|---|
| 606 | Aout(idu3dE) == F ! u_eastward 3D U-eastward at RHO-points
|
|---|
| 607 | Aout(idv3dN) == F ! v_northward 3D V-northward at RHO-points
|
|---|
| 608 | Aout(idWvel) == T ! w 3D W-velocity
|
|---|
| 609 | Aout(idOvel) == T ! omega omega vertical velocity
|
|---|
| 610 | Aout(idUbar) == T ! ubar 2D U-velocity
|
|---|
| 611 | Aout(idVbar) == T ! vbar 2D V-velocity
|
|---|
| 612 | Aout(idu2dE) == F ! ubar_eastward 2D U-eastward at RHO-points
|
|---|
| 613 | Aout(idv2dN) == F ! vbar_northward 2D V-northward at RHO-points
|
|---|
| 614 | Aout(idFsur) == T ! zeta free-surface
|
|---|
| 615 |
|
|---|
| 616 | Aout(idTvar) == 2*T ! temp, salt temperature and salinity
|
|---|
| 617 |
|
|---|
| 618 | Aout(idUsms) == F ! sustr surface U-stress
|
|---|
| 619 | Aout(idVsms) == F ! svstr surface V-stress
|
|---|
| 620 | Aout(idUbms) == F ! bustr bottom U-stress
|
|---|
| 621 | Aout(idVbms) == F ! bvstr bottom V-stress
|
|---|
| 622 |
|
|---|
| 623 | Aout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
|
|---|
| 624 | Aout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
|
|---|
| 625 | Aout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
|
|---|
| 626 | Aout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
|
|---|
| 627 | Aout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
|
|---|
| 628 | Aout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
|
|---|
| 629 | Aout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity
|
|---|
| 630 |
|
|---|
| 631 | Aout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
|
|---|
| 632 | Aout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
|
|---|
| 633 | Aout(idW3yy) == F ! Syy 3D radiation stress, Syy component
|
|---|
| 634 | Aout(idW3zx) == F ! Szx 3D radiation stress, Szx component
|
|---|
| 635 | Aout(idW3zy) == F ! Szy 3D radiation stress, Szy component
|
|---|
| 636 | Aout(idU3rs) == F ! u_Rstress 3D U-radiation stress
|
|---|
| 637 | Aout(idV3rs) == F ! v_Rstress 3D V-radiation stress
|
|---|
| 638 | Aout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
|
|---|
| 639 | Aout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity
|
|---|
| 640 |
|
|---|
| 641 | Aout(idPair) == F ! Pair surface air pressure
|
|---|
| 642 | Aout(idUair) == F ! Uair surface U-wind component
|
|---|
| 643 | Aout(idVair) == F ! Vair surface V-wind component
|
|---|
| 644 |
|
|---|
| 645 | Aout(idTsur) == 2*F ! shflux, ssflux surface net heat and salt flux
|
|---|
| 646 | Aout(idLhea) == F ! latent latent heat flux
|
|---|
| 647 | Aout(idShea) == F ! sensible sensible heat flux
|
|---|
| 648 | Aout(idLrad) == F ! lwrad longwave radiation flux
|
|---|
| 649 | Aout(idSrad) == F ! swrad shortwave radiation flux
|
|---|
| 650 | Aout(idevap) == F ! evaporation evaporation rate
|
|---|
| 651 | Aout(idrain) == F ! rain precipitation rate
|
|---|
| 652 |
|
|---|
| 653 | Aout(idDano) == F ! rho density anomaly
|
|---|
| 654 | Aout(idVvis) == F ! AKv vertical viscosity
|
|---|
| 655 | Aout(idTdif) == F ! AKt vertical T-diffusion
|
|---|
| 656 | Aout(idSdif) == F ! AKs vertical Salinity diffusion
|
|---|
| 657 | Aout(idHsbl) == F ! Hsbl depth of surface boundary layer
|
|---|
| 658 | Aout(idHbbl) == F ! Hbbl depth of bottom boundary layer
|
|---|
| 659 |
|
|---|
| 660 | Aout(id2dRV) == F ! pvorticity_bar 2D relative vorticity
|
|---|
| 661 | Aout(id3dRV) == F ! pvorticity 3D relative vorticity
|
|---|
| 662 | Aout(id2dPV) == F ! rvorticity_bar 2D potential vorticity
|
|---|
| 663 | Aout(id3dPV) == F ! rvorticity 3D potential vorticity
|
|---|
| 664 |
|
|---|
| 665 | Aout(idu3dD) == F ! u_detided detided 3D U-velocity
|
|---|
| 666 | Aout(idv3dD) == F ! v_detided detided 3D V-velocity
|
|---|
| 667 | Aout(idu2dD) == F ! ubar_detided detided 2D U-velocity
|
|---|
| 668 | Aout(idv2dD) == F ! vbar_detided detided 2D V-velocity
|
|---|
| 669 | Aout(idFsuD) == F ! zeta_detided detided free-surface
|
|---|
| 670 |
|
|---|
| 671 | Aout(idTrcD) == 2*F ! temp_detided, ... detided temperature and salinity
|
|---|
| 672 |
|
|---|
| 673 | Aout(idHUav) == F ! Huon u-volume flux, Huon
|
|---|
| 674 | Aout(idHVav) == F ! Hvom v-volume flux, Hvom
|
|---|
| 675 | Aout(idUUav) == F ! uu quadratic <u*u> term
|
|---|
| 676 | Aout(idUVav) == F ! uv quadratic <u*v> term
|
|---|
| 677 | Aout(idVVav) == F ! vv quadratic <v*v> term
|
|---|
| 678 | Aout(idU2av) == F ! ubar2 quadratic <ubar*ubar> term
|
|---|
| 679 | Aout(idV2av) == F ! vbar2 quadratic <vbar*vbar> term
|
|---|
| 680 | Aout(idZZav) == F ! zeta2 quadratic <zeta*zeta> term
|
|---|
| 681 |
|
|---|
| 682 | Aout(idTTav) == 2*F ! temp_2, ... quadratic <t*t> tracer terms
|
|---|
| 683 | Aout(idUTav) == 2*F ! u_temp, ... quadratic <u*t> tracer terms
|
|---|
| 684 | Aout(idVTav) == 2*F ! v_temp, ... quadratic <v*t> tracer terms
|
|---|
| 685 | Aout(iHUTav) == 2*F ! Huon_temp, ... tracer volume flux, <Huon*t>
|
|---|
| 686 | Aout(iHVTav) == 2*F ! Hvom_temp, ... tracer volume flux, <Hvom*t>
|
|---|
| 687 |
|
|---|
| 688 | ! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
|
|---|
| 689 | ! tracers other than biological and sediment tracers into the AVERAGE file.
|
|---|
| 690 |
|
|---|
| 691 | Aout(inert) == T ! dye_01, ... inert passive tracers
|
|---|
| 692 |
|
|---|
| 693 | ! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
|
|---|
| 694 | ! 2D momentum (ubar,vbar) diagnostic terms into DIAGNOSTIC output file.
|
|---|
| 695 |
|
|---|
| 696 | Dout(M2rate) == T ! ubar_accel, ... acceleration
|
|---|
| 697 | Dout(M2pgrd) == T ! ubar_prsgrd, ... pressure gradient
|
|---|
| 698 | Dout(M2fcor) == T ! ubar_cor, ... Coriolis force
|
|---|
| 699 | Dout(M2hadv) == T ! ubar_hadv, ... horizontal total advection
|
|---|
| 700 | Dout(M2xadv) == T ! ubar_xadv, ... horizontal XI-advection
|
|---|
| 701 | Dout(M2yadv) == T ! ubar_yadv, ... horizontal ETA-advection
|
|---|
| 702 | Dout(M2hrad) == T ! ubar_hrad, ... horizontal total radiation stress
|
|---|
| 703 | Dout(M2hvis) == T ! ubar_hvisc, ... horizontal total viscosity
|
|---|
| 704 | Dout(M2xvis) == T ! ubar_xvisc, ... horizontal XI-viscosity
|
|---|
| 705 | Dout(M2yvis) == T ! ubar_yvisc, ... horizontal ETA-viscosity
|
|---|
| 706 | Dout(M2sstr) == T ! ubar_sstr, ... surface stress
|
|---|
| 707 | Dout(M2bstr) == T ! ubar_bstr, ... bottom stress
|
|---|
| 708 |
|
|---|
| 709 | ! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
|
|---|
| 710 | ! 3D momentum (u,v) diagnostic terms into DIAGNOSTIC output file.
|
|---|
| 711 |
|
|---|
| 712 | Dout(M3rate) == T ! u_accel, ... acceleration
|
|---|
| 713 | Dout(M3pgrd) == T ! u_prsgrd, ... pressure gradient
|
|---|
| 714 | Dout(M3fcor) == T ! u_cor, ... Coriolis force
|
|---|
| 715 | Dout(M3hadv) == T ! u_hadv, ... horizontal total advection
|
|---|
| 716 | Dout(M3xadv) == T ! u_xadv, ... horizontal XI-advection
|
|---|
| 717 | Dout(M3yadv) == T ! u_yadv, ... horizontal ETA-advection
|
|---|
| 718 | Dout(M3vadv) == T ! u_vadv, ... vertical advection
|
|---|
| 719 | Dout(M3hrad) == T ! u_hrad, ... horizontal total radiation stress
|
|---|
| 720 | Dout(M3vrad) == T ! u_vrad, ... vertical radiation stress
|
|---|
| 721 | Dout(M3hvis) == T ! u_hvisc, ... horizontal total viscosity
|
|---|
| 722 | Dout(M3xvis) == T ! u_xvisc, ... horizontal XI-viscosity
|
|---|
| 723 | Dout(M3yvis) == T ! u_yvisc, ... horizontal ETA-viscosity
|
|---|
| 724 | Dout(M3vvis) == T ! u_vvisc, ... vertical viscosity
|
|---|
| 725 |
|
|---|
| 726 | ! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
|
|---|
| 727 | ! active (temperature and salinity) and passive (inert) tracer diagnostic
|
|---|
| 728 | ! terms into DIAGNOSTIC output file: [1:NAT+NPT,Ngrids].
|
|---|
| 729 |
|
|---|
| 730 | Dout(iTrate) == 2*T ! temp_rate, ... time rate of change
|
|---|
| 731 | Dout(iThadv) == 2*T ! temp_hadv, ... horizontal total advection
|
|---|
| 732 | Dout(iTxadv) == 2*T ! temp_xadv, ... horizontal XI-advection
|
|---|
| 733 | Dout(iTyadv) == 2*T ! temp_yadv, ... horizontal ETA-advection
|
|---|
| 734 | Dout(iTvadv) == 2*T ! temp_vadv, ... vertical advection
|
|---|
| 735 | Dout(iThdif) == 2*T ! temp_hdiff, ... horizontal total diffusion
|
|---|
| 736 | Dout(iTxdif) == 2*T ! temp_xdiff, ... horizontal XI-diffusion
|
|---|
| 737 | Dout(iTydif) == 2*T ! temp_ydiff, ... horizontal ETA-diffusion
|
|---|
| 738 | Dout(iTsdif) == 2*T ! temp_sdiff, ... horizontal S-diffusion
|
|---|
| 739 | Dout(iTvdif) == 2*T ! temp_vdiff, ... vertical diffusion
|
|---|
| 740 |
|
|---|
| 741 | ! Generic User parameters, [1:NUSER].
|
|---|
| 742 |
|
|---|
| 743 | NUSER = 0
|
|---|
| 744 | USER = 0.d0
|
|---|
| 745 |
|
|---|
| 746 | ! NetCDF-4/HDF5 compression parameters for output files.
|
|---|
| 747 |
|
|---|
| 748 | NC_SHUFFLE = 1 ! if non-zero, turn on shuffle filter
|
|---|
| 749 | NC_DEFLATE = 1 ! if non-zero, turn on deflate filter
|
|---|
| 750 | NC_DLEVEL = 1 ! deflate level [0-9]
|
|---|
| 751 |
|
|---|
| 752 | ! Input NetCDF file names, [1:Ngrids].
|
|---|
| 753 |
|
|---|
| 754 | GRDNAME == ../Data/lake_jersey_grd_a.nc
|
|---|
| 755 | ININAME == ../Data/lake_jersey_ini_a.nc
|
|---|
| 756 | ITLNAME == lake_jersey_itl.nc
|
|---|
| 757 | IRPNAME == lake_jersey_irp.nc
|
|---|
| 758 | IADNAME == lake_jersey_iad.nc
|
|---|
| 759 | FWDNAME == lake_jersey_fwd.nc
|
|---|
| 760 | ADSNAME == lake_jersey_ads.nc
|
|---|
| 761 |
|
|---|
| 762 | ! Nesting grids connectivity data: contact points information. This
|
|---|
| 763 | ! NetCDF file is special and complex. It is currently generated using
|
|---|
| 764 | ! the script "matlab/grid/contact.m" from the Matlab repository.
|
|---|
| 765 |
|
|---|
| 766 | NGCNAME = /dev/null
|
|---|
| 767 |
|
|---|
| 768 | ! Input lateral boundary conditions and climatology file names. The
|
|---|
| 769 | ! USER has the option to split input data time records into several
|
|---|
| 770 | ! NetCDF files (see prologue instructions above). If so, use a single
|
|---|
| 771 | ! line per entry with a vertical bar (|) symbol after each entry,
|
|---|
| 772 | ! except the last one.
|
|---|
| 773 |
|
|---|
| 774 | BRYNAME == lake_jersey_bry.nc
|
|---|
| 775 | CLMNAME == lake_jersey_clm.nc
|
|---|
| 776 |
|
|---|
| 777 | ! Input climatology nudging coefficients file name.
|
|---|
| 778 |
|
|---|
| 779 | NUDNAME == lake_jersey_nud.nc
|
|---|
| 780 |
|
|---|
| 781 | ! Input Sources/Sinks forcing (like river runoff) file name.
|
|---|
| 782 |
|
|---|
| 783 | SSFNAME == lake_jersey_rivers.nc
|
|---|
| 784 |
|
|---|
| 785 | ! Input forcing NetCDF file name(s). The USER has the option to enter
|
|---|
| 786 | ! several file names for each nested grid. For example, the USER may
|
|---|
| 787 | ! have different files for wind products, heat fluxes, tides, etc.
|
|---|
| 788 | ! The model will scan the file list and will read the needed data from
|
|---|
| 789 | ! the first file in the list containing the forcing field. Therefore,
|
|---|
| 790 | ! the order of the file names is very important. If using multiple forcing
|
|---|
| 791 | ! files per grid, first enter all the file names for grid 1, then grid 2,
|
|---|
| 792 | ! and so on. It is also possible to split input data time records into
|
|---|
| 793 | ! several NetCDF files (see prologue instructions above). Use a single line
|
|---|
| 794 | ! per entry with a continuation (\) or vertical bar (|) symbol after each
|
|---|
| 795 | ! entry, except the last one.
|
|---|
| 796 |
|
|---|
| 797 | NFFILES == 1 ! number of unique forcing files
|
|---|
| 798 |
|
|---|
| 799 | FRCNAME == lake_jersey_frc.nc
|
|---|
| 800 |
|
|---|
| 801 | ! Output NetCDF file names, [1:Ngrids].
|
|---|
| 802 |
|
|---|
| 803 | GSTNAME == lake_jersey_gst.nc
|
|---|
| 804 | RSTNAME == lake_jersey_rst.nc
|
|---|
| 805 | HISNAME == lake_jersey_his.nc
|
|---|
| 806 | TLMNAME == lake_jersey_tlm.nc
|
|---|
| 807 | TLFNAME == lake_jersey_tlf.nc
|
|---|
| 808 | ADJNAME == lake_jersey_adj.nc
|
|---|
| 809 | AVGNAME == lake_jersey_avg.nc
|
|---|
| 810 | DIANAME == lake_jersey_dia.nc
|
|---|
| 811 | STANAME == lake_jersey_sta.nc
|
|---|
| 812 | FLTNAME == lake_jersey_flt.nc
|
|---|
| 813 |
|
|---|
| 814 | ! Input ASCII parameter filenames.
|
|---|
| 815 |
|
|---|
| 816 | APARNAM = s4dvar.in
|
|---|
| 817 | SPOSNAM = stations.in
|
|---|
| 818 | FPOSNAM = floats_lake_jersey.in
|
|---|
| 819 | BPARNAM = bio_Fennel.in
|
|---|
| 820 | SPARNAM = sediment_lake_jersey.in
|
|---|
| 821 | USRNAME = MyFile.dat
|
|---|
| 822 |
|
|---|
| 823 | !
|
|---|
| 824 | ! GLOSSARY:
|
|---|
| 825 | ! =========
|
|---|
| 826 | !
|
|---|
| 827 | !------------------------------------------------------------------------------
|
|---|
| 828 | ! Application title (string with a maximum of eighty characters) and
|
|---|
| 829 | ! C-preprocessing flag.
|
|---|
| 830 | !------------------------------------------------------------------------------
|
|---|
| 831 | !
|
|---|
| 832 | ! TITLE Application title.
|
|---|
| 833 | !
|
|---|
| 834 | ! MyAppCPP Application C-preprocessing option.
|
|---|
| 835 | !
|
|---|
| 836 | !------------------------------------------------------------------------------
|
|---|
| 837 | ! Variable information file name (string with a maximum of 256 characters).
|
|---|
| 838 | !------------------------------------------------------------------------------
|
|---|
| 839 | !
|
|---|
| 840 | ! VARNAME Input/Output variable information file name. This file needs to
|
|---|
| 841 | ! be processed first so all information arrays and indices can
|
|---|
| 842 | ! be initialized properly in "mod_ncparam.F".
|
|---|
| 843 | !
|
|---|
| 844 | !------------------------------------------------------------------------------
|
|---|
| 845 | ! Nested grid parameters (processing order of these parameters is important).
|
|---|
| 846 | !------------------------------------------------------------------------------
|
|---|
| 847 | !
|
|---|
| 848 | ! Ngrids Number of nested grids. It needs to be read before all other
|
|---|
| 849 | ! parameters in order to allocate all model variables.
|
|---|
| 850 | !
|
|---|
| 851 | ! NestLayers Number of grid nesting layers. It is used to allow applications
|
|---|
| 852 | ! with both composite and refinement grid combinations, as shown
|
|---|
| 853 | ! in WikiROMS diagrams for the Refinement and Partial Boundary
|
|---|
| 854 | ! Composite Sub-Classes. See,
|
|---|
| 855 | !
|
|---|
| 856 | ! https://www.myroms.org/wiki/index.php/Nested_Grids
|
|---|
| 857 | !
|
|---|
| 858 | ! In non-nesting applications, set NestLayers = 1.
|
|---|
| 859 | !
|
|---|
| 860 | ! GridsInLayer Number of grids in each nested layer, a vector of size
|
|---|
| 861 | ! [1:NestLayers]. Notice that,
|
|---|
| 862 | !
|
|---|
| 863 | ! SUM(GridsInLayer) = Ngrids
|
|---|
| 864 | ! LENGHT(GridsInLayer) = NestLayers
|
|---|
| 865 | !
|
|---|
| 866 | ! The order of grids and nesting layers is extremely important.
|
|---|
| 867 | ! It determines the order of the sequential solution at every
|
|---|
| 868 | ! sub-time step. See WikiROMS nesting Sub-Classes diagrams.
|
|---|
| 869 | !
|
|---|
| 870 | ! In non-nesting applications, set GridsInLayer = 1.
|
|---|
| 871 | !
|
|---|
| 872 | ! NOTE: In main3d, we use these parameters to determine which
|
|---|
| 873 | ! ==== grid index, ng, to solve when calling the routines of
|
|---|
| 874 | ! the computational kernel:
|
|---|
| 875 | !
|
|---|
| 876 | ! NEST_LAYER : DO nl=1,NestLayers
|
|---|
| 877 | ! ...
|
|---|
| 878 | ! STEP_LOOP : DO istep=1,Nsteps
|
|---|
| 879 | ! ...
|
|---|
| 880 | ! DO ig=1,GridsInLayer(nl)
|
|---|
| 881 | ! ng=GridNumber(ig,nl)
|
|---|
| 882 | ! ...
|
|---|
| 883 | ! END DO
|
|---|
| 884 | ! ...
|
|---|
| 885 | ! END DO STEP_LOOP
|
|---|
| 886 | ! END DO NEST_LAYER
|
|---|
| 887 | !
|
|---|
| 888 | ! Here, the grid order "ng" for the computations is determined
|
|---|
| 889 | ! from array "GridNumber", which is computed at initialization
|
|---|
| 890 | ! in "read_phypar.F". It can be computed on the fly as:
|
|---|
| 891 | !
|
|---|
| 892 | ! ng=Ngrids+1
|
|---|
| 893 | ! DO j=NestLayers,nl,-1
|
|---|
| 894 | ! DO i=GridsInLayer(j),1,-1
|
|---|
| 895 | ! ng=ng-1
|
|---|
| 896 | ! IF ((j.eq.nl).and.(i.eq.ig)) EXIT
|
|---|
| 897 | ! END DO
|
|---|
| 898 | ! END DO
|
|---|
| 899 | !
|
|---|
| 900 | ! but it is too inefficient. This information is provided here
|
|---|
| 901 | ! to help you configure the order of nested grids.
|
|---|
| 902 | !
|
|---|
| 903 | !------------------------------------------------------------------------------
|
|---|
| 904 | ! Grid dimension parameters.
|
|---|
| 905 | !------------------------------------------------------------------------------
|
|---|
| 906 | !
|
|---|
| 907 | ! These parameters are very important since they determine the grid of the
|
|---|
| 908 | ! application to solve. They need to be read first in order to dynamically
|
|---|
| 909 | ! allocate all model variables.
|
|---|
| 910 | !
|
|---|
| 911 | ! WARNING: It is trivial and possible to change these dimension parameters in
|
|---|
| 912 | ! ------- idealized applications via analytical expressions. However, in
|
|---|
| 913 | ! realistic applications any change to these parameters requires redoing all
|
|---|
| 914 | ! input NetCDF files.
|
|---|
| 915 | !
|
|---|
| 916 | ! Lm Number of INTERIOR grid RHO-points in the XI-direction for
|
|---|
| 917 | ! each nested grid, [1:Ngrids]. If using NetCDF files as
|
|---|
| 918 | ! input, Lm=xi_rho-2 where "xi_rho" is the NetCDF file
|
|---|
| 919 | ! dimension of RHO-points. Recall that all RHO-point
|
|---|
| 920 | ! variables have a computational I-range of [0:Lm+1].
|
|---|
| 921 | !
|
|---|
| 922 | ! Mm Number of INTERIOR grid RHO-points in the ETA-direction for
|
|---|
| 923 | ! each nested grid, [1:Ngrids]. If using NetCDF files as
|
|---|
| 924 | ! input, Mm=eta_rho-2 where "eta_rho" is the NetCDF file
|
|---|
| 925 | ! dimension of RHO-points. Recall that all RHO-point
|
|---|
| 926 | ! variables have a computational J-range of [0:Mm+1].
|
|---|
| 927 | !
|
|---|
| 928 | ! N Number of vertical terrain-following levels at RHO-points,
|
|---|
| 929 | ! [1:Ngrids].
|
|---|
| 930 | !
|
|---|
| 931 | ! Nbed Number of sediment bed layers, [1:Ngrids]. This parameter
|
|---|
| 932 | ! is only relevant if CPP option SEDIMENT is activated.
|
|---|
| 933 | !
|
|---|
| 934 | ! Mm+1 ___________________ _______ Kw = N
|
|---|
| 935 | ! | | | |
|
|---|
| 936 | ! Mm | _____________ | | | Kr = N
|
|---|
| 937 | ! | | | | |_______|
|
|---|
| 938 | ! | | | | | |
|
|---|
| 939 | ! Jr | | | | | |
|
|---|
| 940 | ! | | | | |_______|
|
|---|
| 941 | ! | | | | | |
|
|---|
| 942 | ! 1 | |_____________| | | |
|
|---|
| 943 | ! | | |_______|
|
|---|
| 944 | ! 0 |___________________| | |
|
|---|
| 945 | ! Ir | | 1
|
|---|
| 946 | ! 0 1 Lm Lm+1 h(i,j) |_______|
|
|---|
| 947 | ! ::::::::: 0
|
|---|
| 948 | ! :::::::::
|
|---|
| 949 | ! ::::::::: Nbed-1
|
|---|
| 950 | ! ::::::::: Nbed
|
|---|
| 951 | !
|
|---|
| 952 | ! NAT Number of active tracer type variables. Usually, NAT=2 for
|
|---|
| 953 | ! potential temperature and salinity.
|
|---|
| 954 | !
|
|---|
| 955 | ! NPT Number of inert (dyes, age, etc) passive tracer type variables
|
|---|
| 956 | ! to advect and diffuse only. This parameter is only relevant
|
|---|
| 957 | ! if CPP option T_PASSIVE is activated.
|
|---|
| 958 | !
|
|---|
| 959 | ! NCS Number of cohesive (mud) sediment tracer type variables. This
|
|---|
| 960 | ! parameter is only relevant if CPP option SEDIMENT is
|
|---|
| 961 | ! activated.
|
|---|
| 962 | !
|
|---|
| 963 | ! NNS Number of non-cohesive (sand) sediment tracer type variables.
|
|---|
| 964 | ! This parameter is only relevant if CPP option SEDIMENT is
|
|---|
| 965 | ! activated.
|
|---|
| 966 | !
|
|---|
| 967 | ! The total number of sediment tracers is NST=NCS+NNS. Notice
|
|---|
| 968 | ! that NST must be greater than zero (NST>0).
|
|---|
| 969 | !
|
|---|
| 970 | !------------------------------------------------------------------------------
|
|---|
| 971 | ! Domain tile partition parameters.
|
|---|
| 972 | !------------------------------------------------------------------------------
|
|---|
| 973 | !
|
|---|
| 974 | ! Model tile decomposition parameters for serial and parallel configurations
|
|---|
| 975 | ! which are used to determine tile horizontal range indices (Istr,Iend and
|
|---|
| 976 | ! Jstr,Jend). In some computers, it is advantageous to have tile partitions
|
|---|
| 977 | ! in serial applications.
|
|---|
| 978 | !
|
|---|
| 979 | ! NtileI Number of domain partitions in the I-direction (XI-coordinate).
|
|---|
| 980 | ! It must be equal to or greater than one.
|
|---|
| 981 | !
|
|---|
| 982 | ! NtileJ Number of domain partitions in the J-direction (ETA-coordinate).
|
|---|
| 983 | ! It must be equal to or greater than one.
|
|---|
| 984 | !
|
|---|
| 985 | ! WARNING: In shared-memory (OpenMP), the product of NtileI and NtileJ must
|
|---|
| 986 | ! be a MULTIPLE of the number of parallel threads specified with
|
|---|
| 987 | ! the OpenMP environmental variable OMP_NUM_THREADS.
|
|---|
| 988 | !
|
|---|
| 989 | ! In distributed-memory (MPI), the product of NtileI and NtileJ
|
|---|
| 990 | ! must be EQUAL to the number of parallel nodes specified during
|
|---|
| 991 | ! execution with the "mprun" or "mpirun" command.
|
|---|
| 992 | !
|
|---|
| 993 | !------------------------------------------------------------------------------
|
|---|
| 994 | ! Lateral boundary conditions parameters.
|
|---|
| 995 | !------------------------------------------------------------------------------
|
|---|
| 996 | !
|
|---|
| 997 | ! The lateral boundary conditions are now specified with logical switches
|
|---|
| 998 | ! instead of CPP flags to allow nested grid configurations. Their values are
|
|---|
| 999 | ! loaded into structured array:
|
|---|
| 1000 | !
|
|---|
| 1001 | ! LBC(1:4, nLBCvar, Ngrids)
|
|---|
| 1002 | !
|
|---|
| 1003 | ! where 1:4 are the number of boundary edges, nLBCvar are the number of LBC
|
|---|
| 1004 | ! state variables, and Ngrids is the number of nested grids. For Example, to
|
|---|
| 1005 | ! apply gradient boundary conditions we use:
|
|---|
| 1006 | !
|
|---|
| 1007 | ! LBC(iwest, isFsur, ng) % gradient
|
|---|
| 1008 | ! LBC(ieast, ... , ng) % gradient
|
|---|
| 1009 | ! LBC(isouth, ... , ng) % gradient
|
|---|
| 1010 | ! LBC(inorth, ... , ng) % gradient
|
|---|
| 1011 | !
|
|---|
| 1012 | ! The lateral boundary conditions are entered with a keyword. This keyword
|
|---|
| 1013 | ! is case insensitive and usually has three characters. However, it is
|
|---|
| 1014 | ! possible to have compound keywords, if applicable. For example, the
|
|---|
| 1015 | ! keyword "RadNud" implies radiation boundary condition with nudging. This
|
|---|
| 1016 | ! combination is usually used in active/passive radiation conditions.
|
|---|
| 1017 | !
|
|---|
| 1018 | ! Keyword Lateral Boundary Condition Type
|
|---|
| 1019 | !
|
|---|
| 1020 | ! Cha Chapman_implicit (free-surface only)
|
|---|
| 1021 | ! Che Chapman_explicit (free-surface only)
|
|---|
| 1022 | ! Cla Clamped
|
|---|
| 1023 | ! Clo Closed
|
|---|
| 1024 | ! Fla Flather (2D momentum only) _____N_____ j=Mm
|
|---|
| 1025 | ! Gra Gradient | 4 |
|
|---|
| 1026 | ! Nes Nested (refinement only) | |
|
|---|
| 1027 | ! Nud Nudging 1 W E 3
|
|---|
| 1028 | ! Per Periodic | |
|
|---|
| 1029 | ! Rad Radiation |_____S_____|
|
|---|
| 1030 | ! Red Reduced Physics (2D momentum only) 2 j=1
|
|---|
| 1031 | ! Shc Shchepetkin (2D momentum only) i=1 i=Lm
|
|---|
| 1032 | !
|
|---|
| 1033 | ! LBC(isFsur) Free-surface, [1:4, Ngrids] values are expected.
|
|---|
| 1034 | ! LBC(isUbar) 2D U-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1035 | ! LBC(isVbar) 2D V-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1036 | ! LBC(isUvel) 3D U-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1037 | ! LBC(isVvel) 3D V-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1038 | ! LBC(isMtke) Mixing TKE, [1:4, Ngrids] values are expected.
|
|---|
| 1039 | ! LBC(isTvar) Tracers, [1:4, 1:NAT+NPT, Ngrids] values are expected.
|
|---|
| 1040 | !
|
|---|
| 1041 | ! Similarly, the adjoint-based algorithms (ADM, TLM, RPM) can have different
|
|---|
| 1042 | ! lateral boundary conditions keywords:
|
|---|
| 1043 | !
|
|---|
| 1044 | ! ad_LBC(isFsur) Free-surface, [1:4, Ngrids] values are expected.
|
|---|
| 1045 | ! ad_LBC(isUbar) 2D U-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1046 | ! ad_LBC(isVbar) 2D V-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1047 | ! ad_LBC(isUvel) 3D U-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1048 | ! ad_LBC(isVvel) 3D V-momentum, [1:4, Ngrids] values are expected.
|
|---|
| 1049 | ! ad_LBC(isMtke) Mixing TKE, [1:4, Ngrids] values are expected.
|
|---|
| 1050 | ! ad_LBC(isTvar) Tracers, [1:4, 1:NAT+NPT, Ngrids] values are expected.
|
|---|
| 1051 | !
|
|---|
| 1052 | ! Lateral open boundary edge volume conservation switch for nonlinear model
|
|---|
| 1053 | ! and adjoint-based algorithm. Usually activated with radiation boundary
|
|---|
| 1054 | ! conditions to enforce global mass conservation. Notice that these switches
|
|---|
| 1055 | ! should not be activated if tidal forcing is enabled, [1:Ngrids] values are
|
|---|
| 1056 | ! expected.
|
|---|
| 1057 | !
|
|---|
| 1058 | ! VolCons(west) Western boundary volume conservation switch.
|
|---|
| 1059 | ! VolCons(east) Eastern boundary volume conservation switch.
|
|---|
| 1060 | ! VolCons(south) Southern boundary volume conservation switch.
|
|---|
| 1061 | ! VolCons(north) Northern boundary volume conservation switch.
|
|---|
| 1062 | !
|
|---|
| 1063 | ! ad_VolCons(west) Western boundary volume conservation switch.
|
|---|
| 1064 | ! ad_VolCons(east) Eastern boundary volume conservation switch.
|
|---|
| 1065 | ! ad_VolCons(south) Southern boundary volume conservation switch.
|
|---|
| 1066 | ! ad_VolCons(north) Northern boundary volume conservation switch.
|
|---|
| 1067 | !
|
|---|
| 1068 | !------------------------------------------------------------------------------
|
|---|
| 1069 | ! Time-Stepping parameters.
|
|---|
| 1070 | !------------------------------------------------------------------------------
|
|---|
| 1071 | !
|
|---|
| 1072 | ! NTIMES Total number time-steps in current run. If 3D configuration,
|
|---|
| 1073 | ! NTIMES is the total of baroclinic time-steps. If only 2D
|
|---|
| 1074 | ! configuration, NTIMES is the total of barotropic time-steps.
|
|---|
| 1075 | !
|
|---|
| 1076 | ! DT Time-Step size in seconds. If 3D configuration, DT is the
|
|---|
| 1077 | ! size of the baroclinic time-step. If only 2D configuration,
|
|---|
| 1078 | ! DT is the size of the barotropic time-step.
|
|---|
| 1079 | !
|
|---|
| 1080 | ! NDTFAST Number of barotropic time-steps between each baroclinic time
|
|---|
| 1081 | ! step. If only 2D configuration, NDTFAST should be unity since
|
|---|
| 1082 | ! there is no need to split time-stepping.
|
|---|
| 1083 | !
|
|---|
| 1084 | !------------------------------------------------------------------------------
|
|---|
| 1085 | ! Model iteration loops parameters.
|
|---|
| 1086 | !------------------------------------------------------------------------------
|
|---|
| 1087 | !
|
|---|
| 1088 | ! ERstr Starting ensemble run (perturbation or iteration) number.
|
|---|
| 1089 | !
|
|---|
| 1090 | ! ERend Ending ensemble run (perturbation or iteration) number.
|
|---|
| 1091 | !
|
|---|
| 1092 | ! Nouter Maximum number of 4DVAR outer loop iterations.
|
|---|
| 1093 | !
|
|---|
| 1094 | ! Ninner Maximum number of 4DVAR inner loop iterations.
|
|---|
| 1095 | !
|
|---|
| 1096 | ! Nintervals Number of time interval divisions for Stochastic Optimals
|
|---|
| 1097 | ! computations. It must be a multiple of NTIMES. The tangent
|
|---|
| 1098 | ! linear model (TLM) and the adjoint model (ADM) are integrated
|
|---|
| 1099 | ! forward and backward at different intervals. For example,
|
|---|
| 1100 | ! if Nintervals=3,
|
|---|
| 1101 | !
|
|---|
| 1102 | ! 1 NTIMES/3 2*NTIMES/3 NTIMES
|
|---|
| 1103 | ! +..................+..................+..................+
|
|---|
| 1104 | ! <========================================================> (1)
|
|---|
| 1105 | ! <=====================================> (2)
|
|---|
| 1106 | ! <==================> (3)
|
|---|
| 1107 | !
|
|---|
| 1108 | ! In the first iteration (1), the TLM is integrated forward from
|
|---|
| 1109 | ! 1 to NTIMES and the ADM is integrated backward from NTIMES to 1.
|
|---|
| 1110 | ! In the second iteration (2), the TLM is integrated forward from
|
|---|
| 1111 | ! NTIMES/3 to NTIMES and the ADM is integrated backward from
|
|---|
| 1112 | ! NTIMES to NTIMES/3. And so on.
|
|---|
| 1113 | !
|
|---|
| 1114 | !------------------------------------------------------------------------------
|
|---|
| 1115 | ! Eigenproblem parameters.
|
|---|
| 1116 | !------------------------------------------------------------------------------
|
|---|
| 1117 | !
|
|---|
| 1118 | ! NEV Number of eigenvalues to compute for the Lanczos/Arnoldi
|
|---|
| 1119 | ! problem. Notice that the model memory requirement increases
|
|---|
| 1120 | ! substantially as NEV increases. The GST requires NEV+1
|
|---|
| 1121 | ! copies of the model state vector. The memory requirements
|
|---|
| 1122 | ! are decreased in distributed-memory applications.
|
|---|
| 1123 | !
|
|---|
| 1124 | ! NCV Number of eigenvectors to compute for the Lanczos/Arnoldi
|
|---|
| 1125 | ! problem. NCV must be greater than NEV.
|
|---|
| 1126 | !
|
|---|
| 1127 | ! At present, there is no a-priori analysis to guide the selection of NCV
|
|---|
| 1128 | ! relative to NEV. The only formal requirement is that NCV > NEV. However
|
|---|
| 1129 | ! in optimal perturbations, it is recommended to have NCV greater than or
|
|---|
| 1130 | ! equal to 2*NEV. In Finite Time Eigenmodes (FTE) and Adjoint Finite Time
|
|---|
| 1131 | ! Eigenmodes (AFTE) the requirement is to have NCV greater than or equal to
|
|---|
| 1132 | ! 2*NEV+1.
|
|---|
| 1133 | !
|
|---|
| 1134 | ! The efficiency of calculations depends critically on the combination of
|
|---|
| 1135 | ! NEV and NCV. If NEV is large (greater than 10 say), you can use NCV=2*NEV+1
|
|---|
| 1136 | ! but for NEV small (less than 6) it will be inefficient to use NCV=2*NEV+1.
|
|---|
| 1137 | ! In complicated applications, you can start with NEV=2 and NCV=10. Otherwise,
|
|---|
| 1138 | ! it will iterate for a very long time.
|
|---|
| 1139 | !
|
|---|
| 1140 | !------------------------------------------------------------------------------
|
|---|
| 1141 | ! Input/Output parameters.
|
|---|
| 1142 | !------------------------------------------------------------------------------
|
|---|
| 1143 | !
|
|---|
| 1144 | ! NRREC Switch to indicate re-start from a previous solution. Use
|
|---|
| 1145 | ! NRREC=0 for new solutions. In a re-start solution, NRREC
|
|---|
| 1146 | ! is the time index of the re-start NetCDF file assigned for
|
|---|
| 1147 | ! initialization. If NRREC is negative (say NRREC=-1), the
|
|---|
| 1148 | ! model will re-start from the most recent time record. That
|
|---|
| 1149 | ! is, the initialization record is assigned internally.
|
|---|
| 1150 | ! Notice that it is also possible to re-start from a history
|
|---|
| 1151 | ! or time-averaged NetCDF file. If a history file is used
|
|---|
| 1152 | ! for re-start, it must contains all the necessary primitive
|
|---|
| 1153 | ! variables at all levels.
|
|---|
| 1154 | !
|
|---|
| 1155 | ! LcycleRST Logical switch (T/F) used to recycle time records in output
|
|---|
| 1156 | ! re-start file. If TRUE, only the latest two re-start time
|
|---|
| 1157 | ! records are maintained. If FALSE, all re-start fields are
|
|---|
| 1158 | ! saved every NRST time-steps without recycling. The re-start
|
|---|
| 1159 | ! fields are written at all levels in double precision.
|
|---|
| 1160 | !
|
|---|
| 1161 | ! NRST Number of time-steps between writing of re-start fields.
|
|---|
| 1162 | !
|
|---|
| 1163 | ! NSTA Number of time-steps between writing data into stations file.
|
|---|
| 1164 | ! Station data is written at all levels.
|
|---|
| 1165 | !
|
|---|
| 1166 | ! NFLT Number of time-steps between writing data into floats file.
|
|---|
| 1167 | !
|
|---|
| 1168 | ! NINFO Number of time-steps between print of single line information
|
|---|
| 1169 | ! to standard output. It also determines the interval between
|
|---|
| 1170 | ! computation of global energy diagnostics.
|
|---|
| 1171 | !
|
|---|
| 1172 | !------------------------------------------------------------------------------
|
|---|
| 1173 | ! Output history and average files parameters.
|
|---|
| 1174 | !------------------------------------------------------------------------------
|
|---|
| 1175 | !
|
|---|
| 1176 | ! LDEFOUT Logical switch (T/F) used to create new output files when
|
|---|
| 1177 | ! initializing from a re-start file, abs(NRREC) > 0. If TRUE
|
|---|
| 1178 | ! and applicable, a new history, average, diagnostic and
|
|---|
| 1179 | ! station files are created during the initialization stage.
|
|---|
| 1180 | ! If FALSE and applicable, data is appended to existing
|
|---|
| 1181 | ! history, average, diagnostic and station files. See also
|
|---|
| 1182 | ! parameters NDEFHIS, NDEFAVG and NDEFDIA below.
|
|---|
| 1183 | !
|
|---|
| 1184 | ! NHIS Number of time-steps between writing fields into history file.
|
|---|
| 1185 | !
|
|---|
| 1186 | ! NDEFHIS Number of time-steps between the creation of new history file.
|
|---|
| 1187 | ! If NDEFHIS=0, the model will only process one history file.
|
|---|
| 1188 | ! This feature is useful for long simulations when history files
|
|---|
| 1189 | ! get too large; it creates a new file every NDEFHIS time-steps.
|
|---|
| 1190 | !
|
|---|
| 1191 | ! NTSAVG Starting time-step for the accumulation of output time-averaged
|
|---|
| 1192 | ! data.
|
|---|
| 1193 | !
|
|---|
| 1194 | ! NAVG Number of time-steps between writing time-averaged data
|
|---|
| 1195 | ! into averages file. Averaged date is written for all fields.
|
|---|
| 1196 | !
|
|---|
| 1197 | ! NDEFAVG Number of time-steps between the creation of new average
|
|---|
| 1198 | ! file. If NDEFAVG=0, the model will only process one average
|
|---|
| 1199 | ! file. This feature is useful for long simulations when
|
|---|
| 1200 | ! average files get too large; it creates a new file every
|
|---|
| 1201 | ! NDEFAVG time-steps.
|
|---|
| 1202 | !
|
|---|
| 1203 | ! NTSDIA Starting time-step for the accumulation of output time-averaged
|
|---|
| 1204 | ! diagnostics data.
|
|---|
| 1205 | !
|
|---|
| 1206 | ! NDIA Number of time-steps between writing time-averaged diagnostics
|
|---|
| 1207 | ! data into diagnostics file. Averaged date is written for all
|
|---|
| 1208 | ! fields.
|
|---|
| 1209 | !
|
|---|
| 1210 | ! NDEFDIA Number of time-steps between the creation of new time-averaged
|
|---|
| 1211 | ! diagnostics file. If NDEFDIA=0, the model will only process
|
|---|
| 1212 | ! one diagnostics file. This feature is useful for long
|
|---|
| 1213 | ! simulations when diagnostics files get too large; it creates
|
|---|
| 1214 | ! a new file every NDEFDIA time-steps.
|
|---|
| 1215 | !
|
|---|
| 1216 | !------------------------------------------------------------------------------
|
|---|
| 1217 | ! Output tangent linear and adjoint model parameters.
|
|---|
| 1218 | !------------------------------------------------------------------------------
|
|---|
| 1219 | !
|
|---|
| 1220 | ! LcycleTLM Logical switch (T/F) used to recycle time records in output
|
|---|
| 1221 | ! tangent linear file. If TRUE, only the latest two time
|
|---|
| 1222 | ! records are maintained. If FALSE, all tangent linear fields
|
|---|
| 1223 | ! are saved every NTLM time-steps without recycling.
|
|---|
| 1224 | !
|
|---|
| 1225 | ! NTLM Number of time-steps between writing fields into tangent linear
|
|---|
| 1226 | ! model file.
|
|---|
| 1227 | !
|
|---|
| 1228 | ! NDEFTLM Number of time-steps between the creation of new tangent linear
|
|---|
| 1229 | ! file. If NDEFTLM=0, the model will only process one tangent
|
|---|
| 1230 | ! linear file. This feature is useful for long simulations when
|
|---|
| 1231 | ! output NetCDF files get too large; it creates a new file every
|
|---|
| 1232 | ! NDEFTLM time-steps.
|
|---|
| 1233 | !
|
|---|
| 1234 | ! LcycleADJ Logical switch (T/F) used to recycle time records in output
|
|---|
| 1235 | ! adjoint file. If TRUE, only the latest two time records are
|
|---|
| 1236 | ! maintained. If FALSE, all tangent linear fields re saved
|
|---|
| 1237 | ! every NADJ time-steps without recycling.
|
|---|
| 1238 | !
|
|---|
| 1239 | ! NADJ Number of time-steps between writing fields into adjoint model
|
|---|
| 1240 | ! file.
|
|---|
| 1241 | !
|
|---|
| 1242 | ! NDEFADJ Number of time-steps between the creation of new adjoint file.
|
|---|
| 1243 | ! If NDEFADJ=0, the model will only process one adjoint file.
|
|---|
| 1244 | ! This feature is useful for long simulations when output NetCDF
|
|---|
| 1245 | ! files get too large; it creates a new file every NDEFADJ
|
|---|
| 1246 | ! time-steps.
|
|---|
| 1247 | !
|
|---|
| 1248 | ! NSFF Number of time-steps between 4DVAR adjustment of surface forcing
|
|---|
| 1249 | ! fluxes. In strong constraint 4DVAR, it is possible to adjust
|
|---|
| 1250 | ! surface forcing at other time intervals in addition to initial
|
|---|
| 1251 | ! time. This parameter is used to store the appropriate number
|
|---|
| 1252 | ! of surface forcing records in the output history NetCDF files:
|
|---|
| 1253 | ! 1+NTIMES/NSFF records. NSFF must be a factor of NTIMES or
|
|---|
| 1254 | ! greater than NTIMES. If NSFF > NTIMES, only one record is
|
|---|
| 1255 | ! stored in the NetCDF files and the adjustment is for constant
|
|---|
| 1256 | ! forcing with constant correction. This parameter is only
|
|---|
| 1257 | ! relevant in 4DVAR when activating either ADJUST_STFLUX or
|
|---|
| 1258 | ! ADJUST_WSTRESS.
|
|---|
| 1259 | !
|
|---|
| 1260 | ! NOBC Number of time-steps between 4DVAR adjustment of open boundary
|
|---|
| 1261 | ! fields. In strong constraint 4DVAR, it is possible to adjust
|
|---|
| 1262 | ! open boundaries at other time intervals in addition to initial
|
|---|
| 1263 | ! time. This parameter is used to store the appropriate number
|
|---|
| 1264 | ! of open boundary records in the output history NetCDF files:
|
|---|
| 1265 | ! 1+NTIMES/NOBC records. NOBC must be a factor of NTIMES or
|
|---|
| 1266 | ! greater than NTIMES. If NOBC > NTIMES, only one record is
|
|---|
| 1267 | ! stored in the NetCDF files and the adjustment is for constant
|
|---|
| 1268 | ! forcing with constant correction. This parameter is only
|
|---|
| 1269 | ! relevant in 4DVAR when activating ADJUST_BOUNDARY.
|
|---|
| 1270 | !
|
|---|
| 1271 | !------------------------------------------------------------------------------
|
|---|
| 1272 | ! Generalized Stability Theory (GST) analysis parameters.
|
|---|
| 1273 | !------------------------------------------------------------------------------
|
|---|
| 1274 | !
|
|---|
| 1275 | ! LmultiGST Logical switch (TRUE/FALSE) to write out one GST analysis
|
|---|
| 1276 | ! eigenvector per history file.
|
|---|
| 1277 | !
|
|---|
| 1278 | ! LrstGST Logical switch (TRUE/FALSE) to restart GST analysis. If TRUE,
|
|---|
| 1279 | ! the check pointing data is read in from the GST restart NetCDF
|
|---|
| 1280 | ! file. If FALSE and applicable, the check pointing GST data is
|
|---|
| 1281 | ! saved and overwritten every NGST iterations of the algorithm.
|
|---|
| 1282 | !
|
|---|
| 1283 | ! MaxIterGST Maximum number of GST algorithm iterations.
|
|---|
| 1284 | !
|
|---|
| 1285 | ! NGST Number of GST iterations between storing of check pointing
|
|---|
| 1286 | ! data into NetCDF file. The restart data is always saved if
|
|---|
| 1287 | ! MaxIterGST is reached without convergence. It is also saved
|
|---|
| 1288 | ! when convergence is achieved. It is always a good idea to
|
|---|
| 1289 | ! save the check pointing data at regular intervals so there
|
|---|
| 1290 | ! is a mechanism to recover from an unexpected interruption
|
|---|
| 1291 | ! in this very expensive computation. The check pointing data
|
|---|
| 1292 | ! can be used also to recompute the Ritz vectors by changing
|
|---|
| 1293 | ! some of the parameters, like convergence criteria (Ritz_tol)
|
|---|
| 1294 | ! and number of Arnoldi iterations (iparam(3)).
|
|---|
| 1295 | !
|
|---|
| 1296 | ! Ritz_tol Relative accuracy of the Ritz values computed in the GST
|
|---|
| 1297 | ! analysis.
|
|---|
| 1298 | !
|
|---|
| 1299 | !------------------------------------------------------------------------------
|
|---|
| 1300 | ! Harmonic/Biharmonic horizontal diffusion for active tracers and viscosity
|
|---|
| 1301 | ! for momentum.
|
|---|
| 1302 | !------------------------------------------------------------------------------
|
|---|
| 1303 | !
|
|---|
| 1304 | ! TNU2 Nonlinear model lateral, harmonic, constant, mixing
|
|---|
| 1305 | ! coefficient (m2/s) for active (NAT) and inert (NPT) tracer
|
|---|
| 1306 | ! variables. If variable horizontal diffusion is activated,
|
|---|
| 1307 | ! TNU2 is the mixing coefficient for the largest grid-cell
|
|---|
| 1308 | ! in the domain.
|
|---|
| 1309 | !
|
|---|
| 1310 | ! TNU4 Nonlinear model lateral, biharmonic, constant, mixing
|
|---|
| 1311 | ! coefficient (m4/s) for active (NAT) and inert (NPT) tracer
|
|---|
| 1312 | ! variables. If variable horizontal diffusion is activated,
|
|---|
| 1313 | ! TNU4 is the mixing coefficient for the largest grid-cell
|
|---|
| 1314 | ! in the domain.
|
|---|
| 1315 | !
|
|---|
| 1316 | ! ad_TNU2 Adjoint-based algorithms lateral, harmonic, constant, mixing
|
|---|
| 1317 | ! coefficient (m2/s) for active (NAT) and inert (NPT) tracer
|
|---|
| 1318 | ! variables. If variable horizontal diffusion is activated,
|
|---|
| 1319 | ! ad_TNU2 is the mixing coefficient for the largest grid-cell
|
|---|
| 1320 | ! in the domain. In some applications, a larger value than
|
|---|
| 1321 | ! that used in the nonlinear model (basic state) is necessary
|
|---|
| 1322 | ! for stability.
|
|---|
| 1323 | !
|
|---|
| 1324 | ! ad_TNU4 Adjoint-based algorithms lateral, biharmonic, constant, mixing
|
|---|
| 1325 | ! coefficient (m4/s) for active (NAT) and inert (NPT) tracer
|
|---|
| 1326 | ! variables. If variable horizontal diffusion is activated,
|
|---|
| 1327 | ! ad_TNU4 is the mixing coefficient for the largest grid-cell
|
|---|
| 1328 | ! in the domain. In some applications, a larger value than
|
|---|
| 1329 | ! that used in the nonlinear model (basic state) is necessary
|
|---|
| 1330 | ! for stability.
|
|---|
| 1331 | !
|
|---|
| 1332 | ! VISC2 Nonlinear model lateral, harmonic, constant, mixing
|
|---|
| 1333 | ! coefficient (m2/s) for momentum. If variable horizontal
|
|---|
| 1334 | ! viscosity is activated, UVNU2 is the mixing coefficient
|
|---|
| 1335 | ! for the largest grid-cell in the domain.
|
|---|
| 1336 | !
|
|---|
| 1337 | ! VISC4 Nonlinear model lateral, biharmonic, constant mixing
|
|---|
| 1338 | ! coefficient (m4/s) for momentum. If variable horizontal
|
|---|
| 1339 | ! viscosity is activated, UVNU4 is the mixing coefficient
|
|---|
| 1340 | ! for the largest grid-cell in the domain.
|
|---|
| 1341 | !
|
|---|
| 1342 | ! ad_VISC2 Adjoint-based algorithms lateral, harmonic, constant, mixing
|
|---|
| 1343 | ! coefficient (m2/s) for momentum. If variable horizontal
|
|---|
| 1344 | ! viscosity is activated, ad_UVNU2 is the mixing coefficient
|
|---|
| 1345 | ! for the largest grid-cell in the domain. In some applications,
|
|---|
| 1346 | ! a larger value than that used in the nonlinear model (basic
|
|---|
| 1347 | ! state) is necessary for stability.
|
|---|
| 1348 | !
|
|---|
| 1349 | ! ad_VISC4 Adjoint-based algorithms lateral, biharmonic, constant mixing
|
|---|
| 1350 | ! coefficient (m4/s) for momentum. If variable horizontal
|
|---|
| 1351 | ! viscosity is activated, ad_UVNU4 is the mixing coefficient
|
|---|
| 1352 | ! for the largest grid-cell in the domain. In some applications,
|
|---|
| 1353 | ! a larger value than that used in the nonlinear model (basic
|
|---|
| 1354 | ! state) is necessary for stability.
|
|---|
| 1355 | !
|
|---|
| 1356 | !------------------------------------------------------------------------------
|
|---|
| 1357 | ! Switches to activate sponge areas with enhanced horizontal mixing.
|
|---|
| 1358 | !------------------------------------------------------------------------------
|
|---|
| 1359 | !
|
|---|
| 1360 | ! LuvSponge Logical switch (TRUE/FALSE) to increase/decrease horizontal
|
|---|
| 1361 | ! viscosity in specific areas of the domain. It can be used
|
|---|
| 1362 | ! to specify sponge areas with larger horizontal mixing
|
|---|
| 1363 | ! coefficients for damping of high frequency noise due to
|
|---|
| 1364 | ! open boundary conditions or nesting. The CPP option SPONGE
|
|---|
| 1365 | ! is now deprecated and replaced with this switch to facilitate
|
|---|
| 1366 | ! or not sponge areas over a particular nested grid.
|
|---|
| 1367 | !
|
|---|
| 1368 | ! The horizontal mixing distribution is specified in
|
|---|
| 1369 | ! "ini_hmixcoef.F" as:
|
|---|
| 1370 | !
|
|---|
| 1371 | ! visc2_r(i,j) = visc_factor(i,j) * visc2_r(i,j)
|
|---|
| 1372 | ! visc4_r(i,j) = visc_factor(i,j) * visc4_r(i,j)
|
|---|
| 1373 | !
|
|---|
| 1374 | ! The variable "visc_factor" can be read from the grid
|
|---|
| 1375 | ! NetCDF file. Alternately, the horizontal viscosity in the
|
|---|
| 1376 | ! sponge area can be set-up with analytical functions in
|
|---|
| 1377 | ! "ana_sponge.h" using CPP ANA_SPONGE when the switch
|
|---|
| 1378 | ! "LuvSponge" is turned ON for a particular grid.
|
|---|
| 1379 | !
|
|---|
| 1380 | ! LtracerSponge Logical switch (TRUE/FALSE) to increase/decrease horizontal
|
|---|
| 1381 | ! diffusivity in specific areas of the domain. It can be used
|
|---|
| 1382 | ! to specify sponge areas with larger horizontal mixing
|
|---|
| 1383 | ! coefficients for damping of high frequency noise due to
|
|---|
| 1384 | ! open boundary conditions or nesting. The CPP option SPONGE
|
|---|
| 1385 | ! is now deprecated and replaced with this switch to facilitate
|
|---|
| 1386 | ! or not sponge areas over a particular nested grid.
|
|---|
| 1387 | !
|
|---|
| 1388 | ! The horizontal mixing distribution is specified in
|
|---|
| 1389 | ! "ini_hmixcoef.F" as:
|
|---|
| 1390 | !
|
|---|
| 1391 | ! diff2(i,j,itrc) = diff_factor(i,j) * diff2(i,j,itrc)
|
|---|
| 1392 | ! diff4(i,j,itrc) = diff_factor(i,j) * diff4(i,j,itrc)
|
|---|
| 1393 | !
|
|---|
| 1394 | ! The variable "diff_factor" can be read from the grid
|
|---|
| 1395 | ! NetCDF file. Alternately, the horizontal viscosity in the
|
|---|
| 1396 | ! sponge area can be set-up with analytical functions in
|
|---|
| 1397 | ! "ana_sponge.h" using CPP ANA_SPONGE when the switch
|
|---|
| 1398 | ! "LuvSponge" is turned ON for a particular grid.
|
|---|
| 1399 | !
|
|---|
| 1400 | !------------------------------------------------------------------------------
|
|---|
| 1401 | ! Vertical mixing coefficients for active tracers.
|
|---|
| 1402 | !------------------------------------------------------------------------------
|
|---|
| 1403 | !
|
|---|
| 1404 | ! AKT_BAK Background vertical mixing coefficient (m2/s) for active
|
|---|
| 1405 | ! (NAT) and inert (NPT) tracer variables.
|
|---|
| 1406 | !
|
|---|
| 1407 | ! ad_AKT_fac Adjoint-based algorithms vertical mixing, basic state, scale
|
|---|
| 1408 | ! factor (nondimensional) for active (NAT) and inert (NPT)
|
|---|
| 1409 | ! tracer variables. In some applications, smaller/larger
|
|---|
| 1410 | ! values of vertical mixing are necessary for stability. It
|
|---|
| 1411 | ! is only used when FORWARD_MIXING is activated.
|
|---|
| 1412 | !
|
|---|
| 1413 | !------------------------------------------------------------------------------
|
|---|
| 1414 | ! Vertical mixing coefficient for momentum.
|
|---|
| 1415 | !------------------------------------------------------------------------------
|
|---|
| 1416 | !
|
|---|
| 1417 | ! AKV_BAK Background vertical mixing coefficient (m2/s) for momentum.
|
|---|
| 1418 | !
|
|---|
| 1419 | ! ad_AKV_fac Adjoint-based algorithms vertical mixing, basic state, scale
|
|---|
| 1420 | ! factor (nondimensional) for momentum. In some applications,
|
|---|
| 1421 | ! smaller/larger values of vertical mixing are necessary for
|
|---|
| 1422 | ! stability. It is only used when FORWARD_MIXING is activated.
|
|---|
| 1423 | !
|
|---|
| 1424 | !------------------------------------------------------------------------------
|
|---|
| 1425 | ! Turbulent closure parameters.
|
|---|
| 1426 | !------------------------------------------------------------------------------
|
|---|
| 1427 | !
|
|---|
| 1428 | ! AKK_BAK Background vertical mixing coefficient (m2/s) for turbulent
|
|---|
| 1429 | ! kinetic energy.
|
|---|
| 1430 | !
|
|---|
| 1431 | ! AKP_BAK Background vertical mixing coefficient (m2/s) for turbulent
|
|---|
| 1432 | ! generic statistical field, "psi".
|
|---|
| 1433 | !
|
|---|
| 1434 | ! TKENU2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
|---|
| 1435 | ! turbulent closure variables.
|
|---|
| 1436 | !
|
|---|
| 1437 | ! TKENU4 Lateral, biharmonic, constant mixing coefficient (m4/s) for
|
|---|
| 1438 | ! turbulent closure variables.
|
|---|
| 1439 | !
|
|---|
| 1440 | !------------------------------------------------------------------------------
|
|---|
| 1441 | ! Generic length-scale turbulence closure parameters.
|
|---|
| 1442 | !------------------------------------------------------------------------------
|
|---|
| 1443 | !
|
|---|
| 1444 | ! GLS_P Stability exponent (non-dimensional).
|
|---|
| 1445 | !
|
|---|
| 1446 | ! GLS_M Turbulent kinetic energy exponent (non-dimensional).
|
|---|
| 1447 | !
|
|---|
| 1448 | ! GLS_N Turbulent length scale exponent (non-dimensional).
|
|---|
| 1449 | !
|
|---|
| 1450 | ! GLS_Kmin Minimum value of specific turbulent kinetic energy
|
|---|
| 1451 | !
|
|---|
| 1452 | ! GLS_Pmin Minimum Value of dissipation.
|
|---|
| 1453 | !
|
|---|
| 1454 | ! Closure independent constraint parameters (non-dimensional):
|
|---|
| 1455 | !
|
|---|
| 1456 | ! GLS_CMU0 Stability coefficient.
|
|---|
| 1457 | !
|
|---|
| 1458 | ! GLS_C1 Shear production coefficient.
|
|---|
| 1459 | !
|
|---|
| 1460 | ! GLS_C2 Dissipation coefficient.
|
|---|
| 1461 | !
|
|---|
| 1462 | ! GLS_C3M Buoyancy production coefficient (minus).
|
|---|
| 1463 | !
|
|---|
| 1464 | ! GLS_C3P Buoyancy production coefficient (plus).
|
|---|
| 1465 | !
|
|---|
| 1466 | ! GLS_SIGK Constant Schmidt number (non-dimensional) for turbulent
|
|---|
| 1467 | ! kinetic energy diffusivity.
|
|---|
| 1468 | !
|
|---|
| 1469 | ! GLS_SIGP Constant Schmidt number (non-dimensional) for turbulent
|
|---|
| 1470 | ! generic statistical field, "psi".
|
|---|
| 1471 | !
|
|---|
| 1472 | ! Suggested values for various parameterizations:
|
|---|
| 1473 | !
|
|---|
| 1474 | ! k-kl k-epsilon k-omega gen
|
|---|
| 1475 | !
|
|---|
| 1476 | ! GLS_P = 0.d0 3.0d0 -1.0d0 2.0d0
|
|---|
| 1477 | ! GLS_M = 1.d0 1.5d0 0.5d0 1.0d0
|
|---|
| 1478 | ! GLS_N = 1.d0 -1.0d0 -1.0d0 -0.67d0
|
|---|
| 1479 | ! GLS_Kmin = 5.0d-6 7.6d-6 7.6d-6 1.0d-8
|
|---|
| 1480 | ! GLS_Pmin = 5.0d-6 1.0d-12 1.0d-12 1.0d-8
|
|---|
| 1481 | !
|
|---|
| 1482 | ! GLS_CMU0 = 0.5544d0 0.5477d0 0.5477d0 0.5544d0
|
|---|
| 1483 | ! GLS_C1 = 0.9d0 1.44d0 0.555d0 1.00d0
|
|---|
| 1484 | ! GLS_C2 = 0.52d0 1.92d0 0.833d0 1.22d0
|
|---|
| 1485 | ! GLS_C3M = 2.5d0 -0.4d0 -0.6d0 0.1d0
|
|---|
| 1486 | ! GLS_C3P = 1.0d0 1.0d0 1.0d0 1.0d0
|
|---|
| 1487 | ! GLS_SIGK = 1.96d0 1.0d0 2.0d0 0.8d0
|
|---|
| 1488 | ! GLS_SIGP = 1.96d0 1.30d0 2.0d0 1.07d0
|
|---|
| 1489 | !
|
|---|
| 1490 | !------------------------------------------------------------------------------
|
|---|
| 1491 | ! Constants used in the various formulations of surface turbulent kinetic
|
|---|
| 1492 | ! energy flux in the GLS.
|
|---|
| 1493 | !------------------------------------------------------------------------------
|
|---|
| 1494 | !
|
|---|
| 1495 | ! CHARNOK_ALPHA Charnok surface roughness,
|
|---|
| 1496 | ! Zos: (charnok_alpha * u_star**2) / g
|
|---|
| 1497 | !
|
|---|
| 1498 | ! ZOS_HSIG_ALPHA Roughness from wave amplitude,
|
|---|
| 1499 | ! Zos: zos_hsig_alpha * Hsig
|
|---|
| 1500 | !
|
|---|
| 1501 | ! SZ_ALPHA Surface flux from wave dissipation,
|
|---|
| 1502 | ! flux: dt * sz_alpha * Wave_dissip
|
|---|
| 1503 | !
|
|---|
| 1504 | ! CRGBAN_CW Surface flux due to Craig and Banner wave breaking,
|
|---|
| 1505 | ! flux: dt * crgban_cw * u_star**3
|
|---|
| 1506 | !
|
|---|
| 1507 | !------------------------------------------------------------------------------
|
|---|
| 1508 | ! Constants used in the computation of momentum stress.
|
|---|
| 1509 | !------------------------------------------------------------------------------
|
|---|
| 1510 | !
|
|---|
| 1511 | ! RDRG Linear bottom drag coefficient (m/s).
|
|---|
| 1512 | !
|
|---|
| 1513 | ! RDRG2 Quadratic bottom drag coefficient.
|
|---|
| 1514 | !
|
|---|
| 1515 | ! Zob Bottom roughness (m).
|
|---|
| 1516 | !
|
|---|
| 1517 | ! Zos Surface roughness (m).
|
|---|
| 1518 | !
|
|---|
| 1519 | !------------------------------------------------------------------------------
|
|---|
| 1520 | ! Height of atmospheric measurements for bulk fluxes parameterization.
|
|---|
| 1521 | !------------------------------------------------------------------------------
|
|---|
| 1522 | !
|
|---|
| 1523 | ! BLK_ZQ Height (m) of surface air humidity measurement. Usually,
|
|---|
| 1524 | ! recorded at 10 m.
|
|---|
| 1525 | !
|
|---|
| 1526 | ! BLK_ZT Height (m) of surface air temperature measurement. Usually,
|
|---|
| 1527 | ! recorded at 2 or 10 m.
|
|---|
| 1528 | !
|
|---|
| 1529 | ! BLK_ZW Height (m) of surface winds measurement. Usually, recorded
|
|---|
| 1530 | ! at 10 m.
|
|---|
| 1531 | !
|
|---|
| 1532 | !------------------------------------------------------------------------------
|
|---|
| 1533 | ! Wetting and drying parameters.
|
|---|
| 1534 | !------------------------------------------------------------------------------
|
|---|
| 1535 | !
|
|---|
| 1536 | ! DCRIT Minimum depth (m) for wetting and drying.
|
|---|
| 1537 | !
|
|---|
| 1538 | !------------------------------------------------------------------------------
|
|---|
| 1539 | ! Jerlov Water type.
|
|---|
| 1540 | !------------------------------------------------------------------------------
|
|---|
| 1541 | !
|
|---|
| 1542 | ! WTYPE Jerlov water type array index used to model the light absorption
|
|---|
| 1543 | ! with a double exponential function (Paulson and Simpson,
|
|---|
| 1544 | ! 1977). The classification ranges from clear open ocean
|
|---|
| 1545 | ! waters (type I) to dark turbulent coastal waters (type 7).
|
|---|
| 1546 | !
|
|---|
| 1547 | ! Array Jerlov
|
|---|
| 1548 | ! Index Water Type Examples
|
|---|
| 1549 | ! ----- ---------- --------
|
|---|
| 1550 | !
|
|---|
| 1551 | ! 1 I Open Pacific
|
|---|
| 1552 | ! 2 IA Eastern Mediterranean, Indian Ocean
|
|---|
| 1553 | ! 3 IB Western Mediterranean, Open Atlantic
|
|---|
| 1554 | ! 4 II Coastal waters, Azores
|
|---|
| 1555 | ! 5 III Coastal waters, North Sea
|
|---|
| 1556 | ! 6 1 Skagerrak Strait
|
|---|
| 1557 | ! 7 3 Baltic
|
|---|
| 1558 | ! 8 5 Black Sea
|
|---|
| 1559 | ! 9 7 Dark coastal water
|
|---|
| 1560 | !
|
|---|
| 1561 | !------------------------------------------------------------------------------
|
|---|
| 1562 | ! Body-force parameters. Used when CPP option BODYFORCE is activated.
|
|---|
| 1563 | !------------------------------------------------------------------------------
|
|---|
| 1564 | !
|
|---|
| 1565 | ! LEVSFRC Deepest level to apply surface momentum stress as a body-force.
|
|---|
| 1566 | !
|
|---|
| 1567 | ! LEVBFRC Shallowest level to apply bottom momentum stress as a body-force.
|
|---|
| 1568 | !
|
|---|
| 1569 | !------------------------------------------------------------------------------
|
|---|
| 1570 | ! Vertical S-coordinates parameters.
|
|---|
| 1571 | !------------------------------------------------------------------------------
|
|---|
| 1572 | !
|
|---|
| 1573 | ! The parameters below must be consistent in all input fields associated with
|
|---|
| 1574 | ! the vertical grid. The same vertical grid transformation (depths) needs to
|
|---|
| 1575 | ! be used when preparing initial conditions, boundary conditions, climatology,
|
|---|
| 1576 | ! observations, and so on. Please check:
|
|---|
| 1577 | !
|
|---|
| 1578 | ! https://www.myroms.org/wiki/index.php/Vertical_S-coordinate
|
|---|
| 1579 | !
|
|---|
| 1580 | ! for details, rules and examples.
|
|---|
| 1581 | !
|
|---|
| 1582 | !
|
|---|
| 1583 | ! Vtransform Vertical transformation equation:
|
|---|
| 1584 | !
|
|---|
| 1585 | ! (1) Original formulation (Shchepetkin and McWilliams, 2005),
|
|---|
| 1586 | ! Vtransform=1 (In ROMS since 1999)
|
|---|
| 1587 | !
|
|---|
| 1588 | ! z(x,y,s,t)=Zo(x,y,s)+zeta(x,y,t)*[1+Zo(x,y,s)/h(x,y)]
|
|---|
| 1589 | !
|
|---|
| 1590 | ! where
|
|---|
| 1591 | !
|
|---|
| 1592 | ! Zo(x,y,s)=hc*s+[h(x,y)-hc]*C(s)
|
|---|
| 1593 | !
|
|---|
| 1594 | ! (2) Improved formulation (A. Shchepetkin, 2005),
|
|---|
| 1595 | ! Vtransform=2
|
|---|
| 1596 | !
|
|---|
| 1597 | ! z(x,y,s,t)=zeta(x,y,t)*[zeta(x,y,t)+h(x,y)]*Zo(x,y,s)
|
|---|
| 1598 | !
|
|---|
| 1599 | ! where
|
|---|
| 1600 | !
|
|---|
| 1601 | ! Zo(x,y,s)=[hc*s(k)+h(x,y)*C(k)]/[hc+h(x,y)]
|
|---|
| 1602 | !
|
|---|
| 1603 | ! The true sigma-coordinate system is recovered as hc goes
|
|---|
| 1604 | ! to INFINITY. This is useful when configuring applications
|
|---|
| 1605 | ! with flat bathymetry and uniform level thickness.
|
|---|
| 1606 | ! Practically, you can achieve this by setting:
|
|---|
| 1607 | !
|
|---|
| 1608 | ! THETA_S = 0.0d0
|
|---|
| 1609 | ! THETA_B = 0.0d0
|
|---|
| 1610 | ! TCLINE = 1.0d+17 (a large number)
|
|---|
| 1611 | !
|
|---|
| 1612 | !
|
|---|
| 1613 | ! Vstretching Vertical stretching function, C(s):
|
|---|
| 1614 | !
|
|---|
| 1615 | ! (1) Original function (Song and Haidvogel, 1994),
|
|---|
| 1616 | ! Vstretching=1
|
|---|
| 1617 | !
|
|---|
| 1618 | ! C(s)=(1-theta_b)*[SINH(s*theta_s)/SINH(theta_s)]+
|
|---|
| 1619 | ! theta_b*[-0.5+0.5*TANH(theta_s*(s+0.5))/
|
|---|
| 1620 | ! TANH(0.5*theta_s)]
|
|---|
| 1621 | !
|
|---|
| 1622 | ! (2) A. Shchepetkin (2005) function,
|
|---|
| 1623 | ! Vstretching=2
|
|---|
| 1624 | !
|
|---|
| 1625 | ! C(s)=Cweight*Csur(s)+(1-Cweight)*Cbot(s)
|
|---|
| 1626 | !
|
|---|
| 1627 | ! where
|
|---|
| 1628 | !
|
|---|
| 1629 | ! Csur(s)=[1-COSH(theta_s*s)]/[COSH(theta_s)-1]
|
|---|
| 1630 | !
|
|---|
| 1631 | ! Cbot(s)=-1+[1-SINH(theta_b*(s+1))]/SINH(theta_b)
|
|---|
| 1632 | !
|
|---|
| 1633 | ! Cweight=(s+1)**alpha*
|
|---|
| 1634 | ! (1+(alpha/beta)*(1-(s+1)**beta))
|
|---|
| 1635 | !
|
|---|
| 1636 | ! (3) R. Geyer function for shallow sediment applications,
|
|---|
| 1637 | ! Vstretching=3
|
|---|
| 1638 | !
|
|---|
| 1639 | ! C(s)=Cweight*Cbot(s)+(1-Cweight)*Csur(s)
|
|---|
| 1640 | !
|
|---|
| 1641 | ! where
|
|---|
| 1642 | !
|
|---|
| 1643 | ! Csur(s)=-LOG(COSH(Hscale*ABS(s)** alpha))/
|
|---|
| 1644 | ! LOG(COSH(Hscale))
|
|---|
| 1645 | !
|
|---|
| 1646 | ! Cbot(s)= LOG(COSH(Hscale*(s+1)** beta))/
|
|---|
| 1647 | ! LOG(COSH(Hscale))-1
|
|---|
| 1648 | !
|
|---|
| 1649 | ! Cweight=0.5*(1-TANH(Hscale*(s+0.5))
|
|---|
| 1650 | !
|
|---|
| 1651 | ! (4) A. Shchepetkin (2010) improved double stretching function,
|
|---|
| 1652 | ! Vstretching=4
|
|---|
| 1653 | !
|
|---|
| 1654 | ! C(s)=[1-COSH(theta_s*s)]/[COSH(theta_s)-1]
|
|---|
| 1655 | !
|
|---|
| 1656 | ! with bottom refinement
|
|---|
| 1657 | !
|
|---|
| 1658 | ! C(s)=[EXP(theta_b*C(s))-1]/[1-EXP(-theta_b)]
|
|---|
| 1659 | !
|
|---|
| 1660 | ! The resulting double transformation is continuous with
|
|---|
| 1661 | ! respect control parameters theta_s and theta_b with a
|
|---|
| 1662 | ! meaningful range of:
|
|---|
| 1663 | !
|
|---|
| 1664 | ! 0 < theta_s <= 10.0
|
|---|
| 1665 | ! 0 <= theta_b <= 4.0
|
|---|
| 1666 | !
|
|---|
| 1667 | ! Many other stretching functions (Vstretching>4) are possible
|
|---|
| 1668 | ! provided that:
|
|---|
| 1669 | !
|
|---|
| 1670 | ! * C(s) is a dimensionless, nonlinear, monotonic function.
|
|---|
| 1671 | ! * C(s) is a continuous differentiable function, or
|
|---|
| 1672 | ! a differentiable piecewise function with smooth transition.
|
|---|
| 1673 | ! * The stretching vertical coordinate ,s, is constrained
|
|---|
| 1674 | ! between -1 <= s <= 0, with s=0 corresponding to the
|
|---|
| 1675 | ! free-surface and s=-1 corresponding to the bathymetry.
|
|---|
| 1676 | ! * Similarly, the stretching function, C(s), is constrained
|
|---|
| 1677 | ! between -1 <= C(s) <= 0, with C(0)=0 corresponding to the
|
|---|
| 1678 | ! free-surface and C(-1)=-1 corresponding to the bathymetry.
|
|---|
| 1679 | !
|
|---|
| 1680 | ! These functions are coded in routine "Utility/set_scoord.F".
|
|---|
| 1681 | !
|
|---|
| 1682 | ! Due to its functionality and properties, the default and recommended vertical
|
|---|
| 1683 | ! coordinates transformation is:
|
|---|
| 1684 | !
|
|---|
| 1685 | ! Vtransform = 2
|
|---|
| 1686 | ! Vstretching = 4
|
|---|
| 1687 | !
|
|---|
| 1688 | !
|
|---|
| 1689 | ! THETA_S S-coordinate surface control parameter. The range of optimal
|
|---|
| 1690 | ! values depends on the vertical stretching function, C(s).
|
|---|
| 1691 | !
|
|---|
| 1692 | ! THETA_B S-coordinate bottom control parameter. The range of optimal
|
|---|
| 1693 | ! values depends on the vertical stretching function, C(s).
|
|---|
| 1694 | !
|
|---|
| 1695 | ! TCLINE Critical depth (hc) in meters (positive) controlling the
|
|---|
| 1696 | ! stretching. It can be interpreted as the width of surface or
|
|---|
| 1697 | ! bottom boundary layer in which higher vertical resolution
|
|---|
| 1698 | ! (levels) is required during stretching.
|
|---|
| 1699 | !
|
|---|
| 1700 | !------------------------------------------------------------------------------
|
|---|
| 1701 | ! Mean Density and background Brunt-Vaisala frequency.
|
|---|
| 1702 | !------------------------------------------------------------------------------
|
|---|
| 1703 | !
|
|---|
| 1704 | ! RHO0 Mean density (Kg/m3) used when the Boussinesq approximation
|
|---|
| 1705 | ! is inferred.
|
|---|
| 1706 | !
|
|---|
| 1707 | ! BVF_BAK Background Brunt-Vaisala frequency squared (1/s2). Typical
|
|---|
| 1708 | ! values for the ocean range (as a function of depth) from
|
|---|
| 1709 | ! 1.0E-4 to 1.0E-6.
|
|---|
| 1710 | !
|
|---|
| 1711 | !------------------------------------------------------------------------------
|
|---|
| 1712 | ! Time Stamps.
|
|---|
| 1713 | !------------------------------------------------------------------------------
|
|---|
| 1714 | !
|
|---|
| 1715 | ! DSTART Time stamp assigned to model initialization (days). Usually
|
|---|
| 1716 | ! a Calendar linear coordinate, like modified Julian Day. For
|
|---|
| 1717 | ! Example:
|
|---|
| 1718 | !
|
|---|
| 1719 | ! Julian Day = 1 for Nov 25, 0:0:0 4713 BCE
|
|---|
| 1720 | ! modified Julian Day = 1 for May 24, 0:0:0 1968 CE GMT
|
|---|
| 1721 | !
|
|---|
| 1722 | ! It is called truncated or modified Julian day because an
|
|---|
| 1723 | ! offset of 2440000 needs to be added.
|
|---|
| 1724 | !
|
|---|
| 1725 | ! TIDE_START Reference time origin for tidal forcing (days). This is the
|
|---|
| 1726 | ! time used when processing input tidal model data. It is needed
|
|---|
| 1727 | ! in routine "set_tides" to compute the correct phase lag with
|
|---|
| 1728 | ! respect ROMS/TOMS initialization time.
|
|---|
| 1729 | !
|
|---|
| 1730 | ! TIME_REF Reference time (yyyymmdd.f) used to compute relative time:
|
|---|
| 1731 | ! elapsed time interval since reference-time. The "units"
|
|---|
| 1732 | ! attribute takes the form "time-unit since reference-time".
|
|---|
| 1733 | ! This parameter also provides information about the calendar
|
|---|
| 1734 | ! used:
|
|---|
| 1735 | !
|
|---|
| 1736 | ! If TIME_REF = -2, model time and DSTART are in modified Julian
|
|---|
| 1737 | ! days units. The "units" attribute is:
|
|---|
| 1738 | !
|
|---|
| 1739 | ! 'time-units since 1968-05-23 00:00:00 GMT'
|
|---|
| 1740 | !
|
|---|
| 1741 | ! If TIME_REF = -1, model time and DSTART are in a calendar
|
|---|
| 1742 | ! with 360 days in every year (30 days each month). The "units"
|
|---|
| 1743 | ! attribute is:
|
|---|
| 1744 | !
|
|---|
| 1745 | ! 'time-units since 0001-01-01 00:00:00'
|
|---|
| 1746 | !
|
|---|
| 1747 | ! If TIME_REF = 0, model time and DSTART are in a common year
|
|---|
| 1748 | ! calendar with 365.25 days. The "units" attribute is:
|
|---|
| 1749 | !
|
|---|
| 1750 | ! 'time-units since 0001-01-01 00:00:00'
|
|---|
| 1751 | !
|
|---|
| 1752 | ! If TIME_REF > 0, model time and DSTART are the elapsed time
|
|---|
| 1753 | ! units since specified reference time. For example,
|
|---|
| 1754 | ! TIME_REF=20020115.5 will yield the following attribute:
|
|---|
| 1755 | !
|
|---|
| 1756 | ! 'time-units since 2002-01-15 12:00:00'
|
|---|
| 1757 | !
|
|---|
| 1758 | !------------------------------------------------------------------------------
|
|---|
| 1759 | ! Nudging/relaxation time scales, inverse scales will be computed internally.
|
|---|
| 1760 | !------------------------------------------------------------------------------
|
|---|
| 1761 | !
|
|---|
| 1762 | ! When passive/active open boundary conditions are activated, these nudging
|
|---|
| 1763 | ! values correspond to the passive (outflow) nudging time scales.
|
|---|
| 1764 | !
|
|---|
| 1765 | ! TNUDG Nudging time scale (days) for active tracer variables.
|
|---|
| 1766 | ! (1:NAT+NPT,1:Ngrids) values are expected.
|
|---|
| 1767 | !
|
|---|
| 1768 | ! ZNUDG Nudging time scale (days) for free-surface.
|
|---|
| 1769 | !
|
|---|
| 1770 | ! M2NUDG Nudging time scale (days) for 2D momentum.
|
|---|
| 1771 | !
|
|---|
| 1772 | ! M3NUDG Nudging time scale (days) for 3D momentum.
|
|---|
| 1773 | !
|
|---|
| 1774 | ! OBCFAC Factor between passive (outflow) and active (inflow) open
|
|---|
| 1775 | ! boundary conditions. The nudging time scales for the
|
|---|
| 1776 | ! active (inflow) conditions are obtained by multiplying
|
|---|
| 1777 | ! the passive values by OBCFAC. If OBCFAC > 1, nudging on
|
|---|
| 1778 | ! inflow is stronger than on outflow (recommended).
|
|---|
| 1779 | !
|
|---|
| 1780 | !------------------------------------------------------------------------------
|
|---|
| 1781 | ! Linear equation of State parameters.
|
|---|
| 1782 | !------------------------------------------------------------------------------
|
|---|
| 1783 | !
|
|---|
| 1784 | ! Ignoring pressure, the linear equation of state is:
|
|---|
| 1785 | !
|
|---|
| 1786 | ! rho(:,:,:) = R0 - R0 * TCOEF * (t(:,:,:,:,itemp) - T0)
|
|---|
| 1787 | ! + R0 * SCOEF * (t(:,:,:,:,isalt) - S0)
|
|---|
| 1788 | !
|
|---|
| 1789 | ! Typical values: R0 = 1027.0 kg/m3
|
|---|
| 1790 | ! T0 = 10.0 Celsius
|
|---|
| 1791 | ! S0 = 35.0 nondimensional
|
|---|
| 1792 | ! TCOEF = 1.7d-4 1/Celsius
|
|---|
| 1793 | ! SCOEF = 7.6d-4 1/nondimensional
|
|---|
| 1794 | !
|
|---|
| 1795 | ! Notice that salinity has NO UNITS, it is nondimensional. Many
|
|---|
| 1796 | ! people use PSU (Practical Salinity Unit). However, salinity
|
|---|
| 1797 | ! has always been defined as a conductivity ratio and does not
|
|---|
| 1798 | ! have physical units. For details, check the following forum
|
|---|
| 1799 | ! post: www.myroms.org/forum/viewtopic.php?f=30&t=294
|
|---|
| 1800 | !
|
|---|
| 1801 | ! R0 Background density value (Kg/m3) used in Linear Equation of
|
|---|
| 1802 | ! State.
|
|---|
| 1803 | !
|
|---|
| 1804 | ! T0 Background potential temperature (Celsius) constant.
|
|---|
| 1805 | !
|
|---|
| 1806 | ! S0 Background salinity (nondimensional) constant.
|
|---|
| 1807 | !
|
|---|
| 1808 | ! TCOEF Thermal expansion coefficient in Linear Equation of State.
|
|---|
| 1809 | !
|
|---|
| 1810 | ! SCOEF Saline contraction coefficient in Linear Equation of State.
|
|---|
| 1811 | !
|
|---|
| 1812 | !------------------------------------------------------------------------------
|
|---|
| 1813 | ! Slipperiness parameter.
|
|---|
| 1814 | !------------------------------------------------------------------------------
|
|---|
| 1815 | !
|
|---|
| 1816 | ! GAMMA2 Slipperiness variable, either 1.0 (free slip) or -1.0 (no slip).
|
|---|
| 1817 | !
|
|---|
| 1818 | !------------------------------------------------------------------------------
|
|---|
| 1819 | ! Point Sources/Sink sources activation switches.
|
|---|
| 1820 | !------------------------------------------------------------------------------
|
|---|
| 1821 | !
|
|---|
| 1822 | ! LuvSrc Logical switches (T/F) to activate momentum horizontal transport
|
|---|
| 1823 | ! points Sources/Sinks. Usually it is used to turn on/off river
|
|---|
| 1824 | ! runoff transport (u or v variables) in an application,
|
|---|
| 1825 | ! [1:Ngrids].
|
|---|
| 1826 | !
|
|---|
| 1827 | ! In nesting applications, turn on only the grids that require
|
|---|
| 1828 | ! activation and processing of momentum point Sources/Sinks.
|
|---|
| 1829 | !
|
|---|
| 1830 | ! LwSrc Logical switches (T/F) to activate mass points Sources/Sinks.
|
|---|
| 1831 | ! Usually, it is used to turn on/off volume vertical influx (w)
|
|---|
| 1832 | ! in an application.
|
|---|
| 1833 | !
|
|---|
| 1834 | ! In nesting applications, turn on only the grids that require
|
|---|
| 1835 | ! activation and processing of mass influx point Sources/Sinks.
|
|---|
| 1836 | !
|
|---|
| 1837 | ! LtracerSrc Logical switches (T/F) to activate tracer variables point
|
|---|
| 1838 | ! Sources/Sinks. Only NAT active tracers (temperature, salinity)
|
|---|
| 1839 | ! and NPT inert tracers are activated here:
|
|---|
| 1840 | !
|
|---|
| 1841 | ! LtracerSrc(itemp,ng) for temperature (itemp=1)
|
|---|
| 1842 | ! LtracerSrc(isalt,ng) for salinity (isalt=2)
|
|---|
| 1843 | ! LtracerSrc(NAT+1,ng) for inert tracer 1
|
|---|
| 1844 | ! ... ...
|
|---|
| 1845 | ! LtracerSrc(NAT+NPT,ng) for inert tracer NPT
|
|---|
| 1846 | !
|
|---|
| 1847 | ! Other biological and sediment tracers switches are activated
|
|---|
| 1848 | ! in their respective input scripts.
|
|---|
| 1849 | !
|
|---|
| 1850 | ! In nesting applications, turn on only the grids that require
|
|---|
| 1851 | ! activation and processing of tracers point Sources/Sinks.
|
|---|
| 1852 | !
|
|---|
| 1853 | ! Recall that switches are usually activated to add river runoff
|
|---|
| 1854 | ! as a point source. At minimum, it is necessary to specify both
|
|---|
| 1855 | ! temperature and salinity for all rivers. The other tracers are
|
|---|
| 1856 | ! optional.
|
|---|
| 1857 | !
|
|---|
| 1858 | ! This logical switch REPLACES and ELIMINATES the need to have
|
|---|
| 1859 | ! or read the variable "river_flag(river)" in the input rivers
|
|---|
| 1860 | ! forcing NetCDF file:
|
|---|
| 1861 | !
|
|---|
| 1862 | ! double river_flag(river)
|
|---|
| 1863 | ! river_flag:long_name = "river runoff tracer flag"
|
|---|
| 1864 | ! river_flag:option_0 = "all tracers are off"
|
|---|
| 1865 | ! river_flag:option_1 = "only temperature"
|
|---|
| 1866 | ! river_flag:option_2 = "only salinity"
|
|---|
| 1867 | ! river_flag:option_3 = "both temperature and salinity"
|
|---|
| 1868 | ! river_flag:units = "nondimensional"
|
|---|
| 1869 | !
|
|---|
| 1870 | ! The above variable was too cumbersome and complicated when
|
|---|
| 1871 | ! additional tracers are considered. However, this change is
|
|---|
| 1872 | ! backward compatible.
|
|---|
| 1873 | !
|
|---|
| 1874 | ! The LtracerSrc switch will be used to activate the reading of
|
|---|
| 1875 | ! respective tracer variable from input river forcing NetCDF
|
|---|
| 1876 | ! file. If you want to add other tracer variables (other than
|
|---|
| 1877 | ! temperature and salinity) as a source for a particular
|
|---|
| 1878 | ! river(s), you just need to specify such values on those
|
|---|
| 1879 | ! river(s). Then, set the values to ZERO on the other river(s)
|
|---|
| 1880 | ! that do NOT require such river forcing for that tracer.
|
|---|
| 1881 | ! Recall that you need to specify the tracer values for all
|
|---|
| 1882 | ! rivers, even if their values are zero.
|
|---|
| 1883 | !
|
|---|
| 1884 | !------------------------------------------------------------------------------
|
|---|
| 1885 | ! Logical switches to process climatology fields. The climatology fields are
|
|---|
| 1886 | ! either read from a NetCDF file or set with analytical CPP options.
|
|---|
| 1887 | !------------------------------------------------------------------------------
|
|---|
| 1888 | !
|
|---|
| 1889 | ! LsshCLM Logical switch (T/F) to process sea-surface height climatology.
|
|---|
| 1890 | ! The CPP option ZCLIMATOLOGY is now obsolete and replaced with
|
|---|
| 1891 | ! this switch to facilitate nesting applications. Currently,
|
|---|
| 1892 | ! the sea-surface height climatology, CLIMA(ng)%ssh, is NOT
|
|---|
| 1893 | ! used but it is kept for future use.
|
|---|
| 1894 | !
|
|---|
| 1895 | ! The nudging of SSH on the free-surface governing equation
|
|---|
| 1896 | ! (vertically integrated continuity equation) is NOT allowed
|
|---|
| 1897 | ! because it violates mass/volume conservation. Recall that
|
|---|
| 1898 | ! the time rate of change of free-surface is computed from the
|
|---|
| 1899 | ! divergence of "ubar" and "vbar". If such nudging term is
|
|---|
| 1900 | ! required, it needs to be specified on the momentum equations
|
|---|
| 1901 | ! for (u,v) and/or (ubar,vbar). If done on (u,v) only, its
|
|---|
| 1902 | ! effects enter the 2D momentum equations via the residual
|
|---|
| 1903 | ! vertically integrated forcing term.
|
|---|
| 1904 | !
|
|---|
| 1905 | ! Lm2CLM Logical switch (T/F) to process 2D momentum (ubar, vbar)
|
|---|
| 1906 | ! climatology. The CPP option M2CLIMATOLOGY is now obsolete
|
|---|
| 1907 | ! and replaced with this switch to facilitate nesting
|
|---|
| 1908 | ! applications. Currently, the CLIMA(ng)%ubarclm and
|
|---|
| 1909 | ! CLIMA(ng)%vbarclm are used for sponges and nudging. If
|
|---|
| 1910 | ! tidal forcing, the climatological values are adjusted to
|
|---|
| 1911 | ! include tides.
|
|---|
| 1912 | !
|
|---|
| 1913 | ! Lm3CLM Logical switch (T/F) to process 3D momentum climatology (u,v)
|
|---|
| 1914 | ! The CPP option M3CLIMATOLOGY is now obsolete and replaced
|
|---|
| 1915 | ! with this switch to facilitate nesting applications.
|
|---|
| 1916 | ! Currently, the CLIMA(ng)%uclm and CLIMA(ng)%vclm are used
|
|---|
| 1917 | ! for sponges and nudging.
|
|---|
| 1918 | !
|
|---|
| 1919 | ! LtracerCLM Logical switches (T/F) to process active and inert tracer
|
|---|
| 1920 | ! variables climatology. The CPP option TCLIMATOLOGY is now
|
|---|
| 1921 | ! obsolete and replaced with these switches to facilitate
|
|---|
| 1922 | ! nesting applications. Currently, the CLIMA(ng)%tclm is
|
|---|
| 1923 | ! used for horizontal mixing, sponges, and nudging.
|
|---|
| 1924 | !
|
|---|
| 1925 | ! Only NAT active tracers (temperature, salinity) and NPT inert
|
|---|
| 1926 | ! tracers need to be specified here:
|
|---|
| 1927 | !
|
|---|
| 1928 | ! LtracerCLM(itemp,ng) for temperature (itemp=1)
|
|---|
| 1929 | ! LtracerCLM(isalt,ng) for salinity (isalt=2)
|
|---|
| 1930 | ! LtracerCLM(NAT+1,ng) for inert tracer 1
|
|---|
| 1931 | ! ... ...
|
|---|
| 1932 | ! LtracerCLM(NAT+NPT,ng) for inert tracer NPT
|
|---|
| 1933 | !
|
|---|
| 1934 | ! Other biological and sediment tracers switches are specified
|
|---|
| 1935 | ! in their respective input scripts.
|
|---|
| 1936 | !
|
|---|
| 1937 | ! These switches also controls which climatology tracer fields
|
|---|
| 1938 | ! (specially passive tracers) needs to be processed. So we
|
|---|
| 1939 | ! may reduce the memory allocation for the CLIMA(ng)%tclm array.
|
|---|
| 1940 | !
|
|---|
| 1941 | !------------------------------------------------------------------------------
|
|---|
| 1942 | ! Logical switches for nudging to climatology fields.
|
|---|
| 1943 | !------------------------------------------------------------------------------
|
|---|
| 1944 | !
|
|---|
| 1945 | ! LnudgeM2CLM Logical switch (T/F) to activate the nugding of 2D momentum
|
|---|
| 1946 | ! climatology. The CPP option M2CLM_NUDGING is now obsolete
|
|---|
| 1947 | ! and replaced with this switch to facilitate nesting
|
|---|
| 1948 | ! applications. Users also need to TURN ON the logical
|
|---|
| 1949 | ! switch "Lm2CLM", described above, to process the required
|
|---|
| 1950 | ! 2D momentum climatology data. This data can be set with
|
|---|
| 1951 | ! analytical functions (ANA_M2CLIMA) or read from input
|
|---|
| 1952 | ! climatology NetCDF file(s).
|
|---|
| 1953 | !
|
|---|
| 1954 | ! The nudging coefficients CLIMA(ng)%M2nudgcof can be set
|
|---|
| 1955 | ! with analytical functions in "ana_nudgcoef.h" using CPP
|
|---|
| 1956 | ! option ANA_NUDGCOEF. Otherwise, it will be read from
|
|---|
| 1957 | ! NetCDF file NUDNAME.
|
|---|
| 1958 | !
|
|---|
| 1959 | ! LnudgeM3CLM Logical switch (T/F) to activate the nugding of 3D momentum
|
|---|
| 1960 | ! climatology. The CPP option M3CLM_NUDGING is now obsolete
|
|---|
| 1961 | ! and replaced with this switch to facilitate nesting
|
|---|
| 1962 | ! applications.
|
|---|
| 1963 | !
|
|---|
| 1964 | ! Users also need to TURN ON the logical switch "Lm3CLM",
|
|---|
| 1965 | ! described above, to process the required 3D momentum
|
|---|
| 1966 | ! climatology data. This data can be set with analytical
|
|---|
| 1967 | ! functions (ANA_M3CLIMA) or read from input climatology
|
|---|
| 1968 | ! NetCDF file(s).
|
|---|
| 1969 | !
|
|---|
| 1970 | ! The nudging coefficients CLIMA(ng)%M3nudgcof can be set
|
|---|
| 1971 | ! with analytical functions in "ana_nudgcoef.h" using CPP
|
|---|
| 1972 | ! option ANA_NUDGCOEF. Otherwise, it will be read from
|
|---|
| 1973 | ! NetCDF file NUDNAME.
|
|---|
| 1974 | !
|
|---|
| 1975 | ! LnudgeTCLM Logical switches (T/F) to activate the nugding of active and
|
|---|
| 1976 | ! inert tracer variables climatology. These switches also
|
|---|
| 1977 | ! control which tracer variables to nudge. The CPP option
|
|---|
| 1978 | ! TCLM_NUDGING is now obsolete and replaced with these
|
|---|
| 1979 | ! switches to facilitate nesting applications.
|
|---|
| 1980 | !
|
|---|
| 1981 | ! User also needs to TURN ON the respective logical switches
|
|---|
| 1982 | ! "LtracerCLM", described above, to process the required 3D
|
|---|
| 1983 | ! tracer climatology data. This data can be set with analytical
|
|---|
| 1984 | ! functions (ANA_TCLIMA) or read from input climatology
|
|---|
| 1985 | ! NetCDF file(s).
|
|---|
| 1986 | !
|
|---|
| 1987 | ! The nudging coefficients CLIMA(ng)%Tnudgcof can be set
|
|---|
| 1988 | ! with analytical functions in "ana_nudgcoef.h" using CPP
|
|---|
| 1989 | ! option ANA_NUDGCOEF. Otherwise, it will be read from
|
|---|
| 1990 | ! NetCDF file NUDNAME.
|
|---|
| 1991 | !
|
|---|
| 1992 | !------------------------------------------------------------------------------
|
|---|
| 1993 | ! Adjoint sensitivity parameters.
|
|---|
| 1994 | !------------------------------------------------------------------------------
|
|---|
| 1995 | !
|
|---|
| 1996 | ! DstrS Starting day for adjoint sensitivity forcing.
|
|---|
| 1997 | !
|
|---|
| 1998 | ! DendS Ending day for adjoint sensitivity forcing.
|
|---|
| 1999 | !
|
|---|
| 2000 | ! The adjoint forcing is applied at every time step according
|
|---|
| 2001 | ! to desired state functional stored in the adjoint sensitivity
|
|---|
| 2002 | ! NetCDF file. DstrS must be less than or equal to DendS. If
|
|---|
| 2003 | ! both values are zero, their values are reset internally to
|
|---|
| 2004 | ! the full range of the adjoint integration.
|
|---|
| 2005 | !
|
|---|
| 2006 | ! KstrS Starting vertical level of the 3D adjoint state variables whose
|
|---|
| 2007 | ! sensitivity is required.
|
|---|
| 2008 | !
|
|---|
| 2009 | ! KendS Ending vertical level of the 3D adjoint state variables whose
|
|---|
| 2010 | ! sensitivity is required.
|
|---|
| 2011 | !
|
|---|
| 2012 | ! Lstate Logical switches (TRUE/FALSE) to specify the adjoint state
|
|---|
| 2013 | ! variables whose sensitivity is required.
|
|---|
| 2014 | !
|
|---|
| 2015 | ! Lstate(isFsur): Free-surface
|
|---|
| 2016 | ! Lstate(isUbar): 2D U-momentum
|
|---|
| 2017 | ! Lstate(isVbar): 2D V-momentum
|
|---|
| 2018 | ! Lstate(isUvel): 3D U-momentum
|
|---|
| 2019 | ! Lstate(isVvel): 3D V-momentum
|
|---|
| 2020 | ! Lstate(isTvar): Traces (NT values expected)
|
|---|
| 2021 | !
|
|---|
| 2022 | !------------------------------------------------------------------------------
|
|---|
| 2023 | ! Forcing Singular Vectors or Stochastic Optimals parameters.
|
|---|
| 2024 | !------------------------------------------------------------------------------
|
|---|
| 2025 | !
|
|---|
| 2026 | ! Fstate Logical switches (TRUE/FALSE) to specify state variables for
|
|---|
| 2027 | ! which Forcing Singular Vectors or Stochastic Optimals is
|
|---|
| 2028 | ! required.
|
|---|
| 2029 | !
|
|---|
| 2030 | ! Fstate(isFsur): Free-surface
|
|---|
| 2031 | ! Fstate(isUbar): 2D U-momentum
|
|---|
| 2032 | ! Fstate(isVbar): 2D V-momentum
|
|---|
| 2033 | ! Fstate(isUvel): 3D U-momentum
|
|---|
| 2034 | ! Fstate(isVvel): 3D V-momentum
|
|---|
| 2035 | ! Fstate(isTvar): Traces (NT values expected)
|
|---|
| 2036 | !
|
|---|
| 2037 | ! Fstate(isUstr): surface U-stress
|
|---|
| 2038 | ! Fstate(isVstr): surface V-stress
|
|---|
| 2039 | ! Fstate(isTsur): surface tracers flux (NT values expected)
|
|---|
| 2040 | !
|
|---|
| 2041 | ! SO_decay Stochastic Optimals time decorrelation scale (days) assumed
|
|---|
| 2042 | ! for red noise processes.
|
|---|
| 2043 | !
|
|---|
| 2044 | ! SO_sdev Stochastic Optimals surface forcing standard deviation for
|
|---|
| 2045 | ! dimensionalization.
|
|---|
| 2046 | !
|
|---|
| 2047 | ! SO_sdev(isFsur): Free-surface
|
|---|
| 2048 | ! SO_sdev(isUbar): 2D U-momentum
|
|---|
| 2049 | ! SO_sdev(isVbar): 2D V-momentum
|
|---|
| 2050 | ! SO_sdev(isUvel): 3D U-momentum
|
|---|
| 2051 | ! SO_sdev(isVvel): 3D V-momentum
|
|---|
| 2052 | ! SO_sdev(isTvar): Traces (NT values expected)
|
|---|
| 2053 | !
|
|---|
| 2054 | ! SO_sdev(isUstr): surface U-stress
|
|---|
| 2055 | ! SO_sdev(isVstr): surface V-stress
|
|---|
| 2056 | ! SO_sdev(isTsur): surface tracer flux (NT values expected)
|
|---|
| 2057 | !
|
|---|
| 2058 | !------------------------------------------------------------------------------
|
|---|
| 2059 | ! Logical switches (T/F) to activate writing of instantaneous fields into
|
|---|
| 2060 | ! HISTORY file.
|
|---|
| 2061 | !------------------------------------------------------------------------------
|
|---|
| 2062 | !
|
|---|
| 2063 | ! Hout(idUvel) Write out 3D U-velocity component.
|
|---|
| 2064 | ! Hout(idVvel) Write out 3D V-velocity component.
|
|---|
| 2065 | ! Hout(idu3dE) Write out 3D Eastward velocity component at RHO-points.
|
|---|
| 2066 | ! Hout(idv3dN) Write out 3D Northward velocity component at RHO-points.
|
|---|
| 2067 | ! Hout(idWvel) Write out 3D W-velocity component.
|
|---|
| 2068 | ! Hout(idOvel) Write out 3D omega vertical velocity.
|
|---|
| 2069 | ! Hout(idUbar) Write out 2D U-velocity component.
|
|---|
| 2070 | ! Hout(idVbar) Write out 2D V-velocity component.
|
|---|
| 2071 | ! Hout(idu2dE) Write out 2D Eastward velocity component at RHO-points.
|
|---|
| 2072 | ! Hout(idv2dN) Write out 2D Northward velocity component at RHO-points.
|
|---|
| 2073 | ! Hout(idFsur) Write out free-surface.
|
|---|
| 2074 | ! Hout(idBath) Write out time-dependent bathymetry.
|
|---|
| 2075 | !
|
|---|
| 2076 | ! Hout(idTvar) Write out active (NAT) tracers: temperature and salinity.
|
|---|
| 2077 | !
|
|---|
| 2078 | ! Hout(idUsms) Write out surface U-momentum stress.
|
|---|
| 2079 | ! Hout(idVsms) Write out surface V-momentum stress.
|
|---|
| 2080 | ! Hout(idUbms) Write out bottom U-momentum stress.
|
|---|
| 2081 | ! Hout(idVbms) Write out bottom V-momentum stress.
|
|---|
| 2082 | !
|
|---|
| 2083 | ! Hout(idUbrs) Write out current-induced, U-momentum stress.
|
|---|
| 2084 | ! Hout(idVbrs) Write out current-induced, V-momentum stress.
|
|---|
| 2085 | ! Hout(idUbws) Write out wind-induced, bottom U-wave stress.
|
|---|
| 2086 | ! Hout(idVbws) Write out wind-induced, bottom V-wave stress.
|
|---|
| 2087 | ! Hout(idUbcs) Write out bottom maximum wave and current U-stress.
|
|---|
| 2088 | ! Hout(idVbcs) Write out bottom maximum wave and current V-stress.
|
|---|
| 2089 | !
|
|---|
| 2090 | ! Hout(idUbot) Write out wind-induced, bed wave orbital U-velocity.
|
|---|
| 2091 | ! Hout(idVbot) Write out wind-induced, bed wave orbital V-velocity.
|
|---|
| 2092 | ! Hout(idUbur) Write out bottom U-velocity above bed.
|
|---|
| 2093 | ! Hout(idVbvr) Write out bottom V-velocity above bed.
|
|---|
| 2094 | !
|
|---|
| 2095 | ! Hout(idW2xx) Write out 2D radiation stress, Sxx component.
|
|---|
| 2096 | ! Hout(idW2xy) Write out 2D radiation stress, Sxy component.
|
|---|
| 2097 | ! Hout(idW2yy) Write out 2D radiation stress, Syy component.
|
|---|
| 2098 | ! Hout(idU2rs) Write out 2D U-radiation stress.
|
|---|
| 2099 | ! Hout(idV2rs) Write out 2D V-radiation stress.
|
|---|
| 2100 | ! Hout(idU2Sd) Write out 2D U-Stokes velocity.
|
|---|
| 2101 | ! Hout(idV2Sd) Write out 2D V-Stokes velocity.
|
|---|
| 2102 | !
|
|---|
| 2103 | ! Hout(idW3xx) Write out 3D radiation stress, Sxx component.
|
|---|
| 2104 | ! Hout(idW3xy) Write out 3D radiation stress, Sxy component.
|
|---|
| 2105 | ! Hout(idW3yy) Write out 3D radiation stress, Syy component.
|
|---|
| 2106 | ! Hout(idW3zx) Write out 3D radiation stress, Szx component.
|
|---|
| 2107 | ! Hout(idW3zy) Write out 3D radiation stress, Szy component.
|
|---|
| 2108 | ! Hout(idU3rs) Write out 3D U-radiation stress.
|
|---|
| 2109 | ! Hout(idV3rs) Write out 3D V-radiation stress.
|
|---|
| 2110 | ! Hout(idU3Sd) Write out 3D U-Stokes velocity.
|
|---|
| 2111 | ! Hout(idV3Sd) Write out 3D V-Stokes velocity.
|
|---|
| 2112 | !
|
|---|
| 2113 | ! Hout(idWamp) Write out wave height.
|
|---|
| 2114 | ! Hout(idWlen) Write out wave length.
|
|---|
| 2115 | ! Hout(idWdir) Write out wave direction.
|
|---|
| 2116 | ! Hout(idWptp) Write out wave surface period.
|
|---|
| 2117 | ! Hout(idWpbt) Write out wave bottom period.
|
|---|
| 2118 | ! Hout(idWorb) Write out wave bottom orbital velocity.
|
|---|
| 2119 | ! Hout(idWdis) Write out wave dissipation.
|
|---|
| 2120 | !
|
|---|
| 2121 | ! Hout(idPair) Write out surface air pressure.
|
|---|
| 2122 | ! Hout(idUair) Write out surface U-wind component.
|
|---|
| 2123 | ! Hout(idVair) Write out surface V-wind component.
|
|---|
| 2124 | !
|
|---|
| 2125 | ! Hout(idTsur) Write out surface net heat and salt flux
|
|---|
| 2126 | ! Hout(idLhea) Write out latent heat flux.
|
|---|
| 2127 | ! Hout(idShea) Write out sensible heat flux.
|
|---|
| 2128 | ! Hout(idLrad) Write out long-wave radiation flux.
|
|---|
| 2129 | ! Hout(idSrad) Write out short-wave radiation flux.
|
|---|
| 2130 | ! Hout(idEmPf) Write out E-P flux.
|
|---|
| 2131 | ! Hout(idevap) Write out evaporation rate.
|
|---|
| 2132 | ! Hout(idrain) Write out precipitation rate.
|
|---|
| 2133 | !
|
|---|
| 2134 | ! Hout(idDano) Write out density anomaly.
|
|---|
| 2135 | ! Hout(idVvis) Write out vertical viscosity coefficient.
|
|---|
| 2136 | ! Hout(idTdif) Write out vertical diffusion coefficient of temperature.
|
|---|
| 2137 | ! Hout(idSdif) Write out vertical diffusion coefficient of salinity.
|
|---|
| 2138 | ! Hout(idHsbl) Write out depth of oceanic surface boundary layer.
|
|---|
| 2139 | ! Hout(idHbbl) Write out depth of oceanic bottom boundary layer.
|
|---|
| 2140 | ! Hout(idMtke) Write out turbulent kinetic energy.
|
|---|
| 2141 | ! Hout(idMtls) Write out turbulent kinetic energy times length scale.
|
|---|
| 2142 | !
|
|---|
| 2143 | ! Hout(inert) Write out extra inert passive tracers.
|
|---|
| 2144 | !
|
|---|
| 2145 | ! Hout(idBott) Write out exposed sediment layer properties, 1:MBOTP.
|
|---|
| 2146 | !
|
|---|
| 2147 | !------------------------------------------------------------------------------
|
|---|
| 2148 | ! Logical switches (T/F) to activate writing of time-averaged fields into
|
|---|
| 2149 | ! AVERAGE file.
|
|---|
| 2150 | !------------------------------------------------------------------------------
|
|---|
| 2151 | !
|
|---|
| 2152 | ! Aout(idUvel) Write out 3D U-velocity component.
|
|---|
| 2153 | ! Aout(idVvel) Write out 3D V-velocity component.
|
|---|
| 2154 | ! Aout(idu3dE) Write out 3D Eastward velocity component at RHO-points.
|
|---|
| 2155 | ! Aout(idv3dN) Write out 3D Northward velocity component at RHO-points.
|
|---|
| 2156 | ! Aout(idWvel) Write out 3D W-velocity component.
|
|---|
| 2157 | ! Aout(idOvel) Write out 3D omega vertical velocity.
|
|---|
| 2158 | ! Aout(idUbar) Write out 2D U-velocity component.
|
|---|
| 2159 | ! Aout(idVbar) Write out 2D V-velocity component.
|
|---|
| 2160 | ! Aout(idu2dE) Write out 2D Eastward velocity component at RHO-points.
|
|---|
| 2161 | ! Aout(idv2dN) Write out 2D Northward velocity component at RHO-points.
|
|---|
| 2162 | ! Aout(idFsur) Write out free-surface.
|
|---|
| 2163 | !
|
|---|
| 2164 | ! Aout(idTvar) Write out active (NAT) tracers: temperature and salinity.
|
|---|
| 2165 | !
|
|---|
| 2166 | ! Aout(idUsms) Write out surface U-momentum stress.
|
|---|
| 2167 | ! Aout(idVsms) Write out surface V-momentum stress.
|
|---|
| 2168 | ! Aout(idUbms) Write out bottom U-momentum stress.
|
|---|
| 2169 | ! Aout(idVbms) Write out bottom V-momentum stress.
|
|---|
| 2170 | !
|
|---|
| 2171 | ! Aout(idW2xx) Write out 2D radiation stress, Sxx component.
|
|---|
| 2172 | ! Aout(idW2xy) Write out 2D radiation stress, Sxy component.
|
|---|
| 2173 | ! Aout(idW2yy) Write out 2D radiation stress, Syy component.
|
|---|
| 2174 | ! Aout(idU2rs) Write out 2D U-radiation stress.
|
|---|
| 2175 | ! Aout(idV2rs) Write out 2D V-radiation stress.
|
|---|
| 2176 | ! Aout(idU2Sd) Write out 2D U-Stokes velocity.
|
|---|
| 2177 | ! Aout(idV2Sd) Write out 2D V-Stokes velocity.
|
|---|
| 2178 | !
|
|---|
| 2179 | ! Aout(idW3xx) Write out 3D radiation stress, Sxx component.
|
|---|
| 2180 | ! Aout(idW3xy) Write out 3D radiation stress, Sxy component.
|
|---|
| 2181 | ! Aout(idW3yy) Write out 3D radiation stress, Syy component.
|
|---|
| 2182 | ! Aout(idW3zx) Write out 3D radiation stress, Szx component.
|
|---|
| 2183 | ! Aout(idW3zy) Write out 3D radiation stress, Szy component.
|
|---|
| 2184 | ! Aout(idU3rs) Write out 3D U-radiation stress.
|
|---|
| 2185 | ! Aout(idV3rs) Write out 3D V-radiation stress.
|
|---|
| 2186 | ! Aout(idU3Sd) Write out 3D U-Stokes velocity.
|
|---|
| 2187 | ! Aout(idV3Sd) Write out 3D V-Stokes velocity.
|
|---|
| 2188 | !
|
|---|
| 2189 | ! Aout(idPair) Write out surface air pressure.
|
|---|
| 2190 | ! Aout(idUair) Write out surface U-wind component.
|
|---|
| 2191 | ! Aout(idVair) Write out surface V-wind component.
|
|---|
| 2192 | !
|
|---|
| 2193 | ! Aout(idTsur) Write out surface net heat and salt flux
|
|---|
| 2194 | ! Aout(idLhea) Write out latent heat flux.
|
|---|
| 2195 | ! Aout(idShea) Write out sensible heat flux.
|
|---|
| 2196 | ! Aout(idLrad) Write out long-wave radiation flux.
|
|---|
| 2197 | ! Aout(idSrad) Write out short-wave radiation flux.
|
|---|
| 2198 | ! Aout(idevap) Write out evaporation rate.
|
|---|
| 2199 | ! Aout(idrain) Write out precipitation rate.
|
|---|
| 2200 | !
|
|---|
| 2201 | ! Aout(idDano) Write out density anomaly.
|
|---|
| 2202 | ! Aout(idVvis) Write out vertical viscosity coefficient.
|
|---|
| 2203 | ! Aout(idTdif) Write out vertical diffusion coefficient of temperature.
|
|---|
| 2204 | ! Aout(idSdif) Write out vertical diffusion coefficient of salinity.
|
|---|
| 2205 | ! Aout(idHsbl) Write out depth of oceanic surface boundary layer.
|
|---|
| 2206 | ! Aout(idHbbl) Write out depth of oceanic bottom boundary layer.
|
|---|
| 2207 | !
|
|---|
| 2208 | ! Aout(id2dRV) Write out 2D relative vorticity (vertically integrated).
|
|---|
| 2209 | ! Aout(id3dRV) Write out 3D relative vorticity.
|
|---|
| 2210 | ! Aout(id2dPV) Write out 2D potential vorticity (shallow water).
|
|---|
| 2211 | ! Aout(id3dPV) Write out 3D potential vorticity.
|
|---|
| 2212 | !
|
|---|
| 2213 | ! Aout(idu3dD) Write out detided 3D U-velocity.
|
|---|
| 2214 | ! Aout(idv3dD) Write out detided 3D V-velocity.
|
|---|
| 2215 | ! Aout(idu2dD) Write out detided 2D U-velocity.
|
|---|
| 2216 | ! Aout(idv2dD) Write out detided 2D V-velocity.
|
|---|
| 2217 | ! Aout(idFsuD) Write out detided free-surface
|
|---|
| 2218 | !
|
|---|
| 2219 | ! Aout(idTrcD) Write out detided temperature and salinity.
|
|---|
| 2220 | !
|
|---|
| 2221 | ! Aout(idHUav) Write out u-volume flux, Huon.
|
|---|
| 2222 | ! Aout(idHVav) Write out v-volume flux, Hvom.
|
|---|
| 2223 | ! Aout(idUUav) Write out quadratic <u*u> term.
|
|---|
| 2224 | ! Aout(idUVav) Write out quadratic <u*v> term.
|
|---|
| 2225 | ! Aout(idVVav) Write out quadratic <v*v> term.
|
|---|
| 2226 | ! Aout(idU2av) Write out quadratic <ubar*ubar> term.
|
|---|
| 2227 | ! Aout(idV2av) Write out quadratic <vbar*vbar> term.
|
|---|
| 2228 | ! Aout(idZZav) Write out quadratic <zeta*zeta> term.
|
|---|
| 2229 | !
|
|---|
| 2230 | ! Aout(idTTav) Write out quadratic <t*t> active and inert tracers terms.
|
|---|
| 2231 | ! Aout(idUTav) Write out quadratic <u*t> active and inert tracers terms.
|
|---|
| 2232 | ! Aout(idVTav) Write out quadratic <v*t> active and inert tracers terms.
|
|---|
| 2233 | ! Aout(iHUTav) Write out active and inert tracer u-volume flux, <Huon*t>.
|
|---|
| 2234 | ! Aout(iHVTav) Write out active and inert tracer v-volume flux, <Hvom*t>.
|
|---|
| 2235 | !
|
|---|
| 2236 | ! Aout(inert) Write out extra inert passive tracers.
|
|---|
| 2237 | !
|
|---|
| 2238 | !------------------------------------------------------------------------------
|
|---|
| 2239 | ! Logical switches (T/F) to activate writing of time-averaged fields into
|
|---|
| 2240 | ! DIAGNOSTIC file.
|
|---|
| 2241 | !------------------------------------------------------------------------------
|
|---|
| 2242 | !
|
|---|
| 2243 | ! Time-averaged, 2D momentum (ubar,vbar) diagnostic terms:
|
|---|
| 2244 | ! (if DIAGNOSTICS_UV)
|
|---|
| 2245 | !
|
|---|
| 2246 | ! Dout(M2rate) Write out acceleration.
|
|---|
| 2247 | ! Dout(M2pgrd) Write out pressure gradient.
|
|---|
| 2248 | ! Dout(M2fcor) Write out Coriolis force, if UV_COR.
|
|---|
| 2249 | ! Dout(M2hadv) Write out horizontal total advection, if UV_ADV.
|
|---|
| 2250 | ! Dout(M2xadv) Write out horizontal XI-advection, if UV_ADV.
|
|---|
| 2251 | ! Dout(M2yadv) Write out horizontal ETA-advection, if UV_ADV.
|
|---|
| 2252 | ! Dout(M2hrad) Write out horizontal total radiation stress, NEARSHORE_MELLOR.
|
|---|
| 2253 | ! Dout(M2hvis) Write out horizontal total viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2254 | ! Dout(M2xvis) Write out horizontal XI-viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2255 | ! Dout(M2yvis) Write out horizontal ETA-viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2256 | ! Dout(M2sstr) Write out surface stress.
|
|---|
| 2257 | ! Dout(M2bstr) Write out bottom stress
|
|---|
| 2258 | !
|
|---|
| 2259 | ! Time-averaged, 3D momentum (u,v) diagnostic terms:
|
|---|
| 2260 | ! (if SOLVE3D and DIAGNOSTICS_UV)
|
|---|
| 2261 | !
|
|---|
| 2262 | ! Dout(M3rate) Write out acceleration.
|
|---|
| 2263 | ! Dout(M3pgrd) Write out pressure gradient.
|
|---|
| 2264 | ! Dout(M3fcor) Write out Coriolis force, if UV_COR.
|
|---|
| 2265 | ! Dout(M3hadv) Write out horizontal total advection, if UV_ADV.
|
|---|
| 2266 | ! Dout(M3xadv) Write out horizontal XI-advection, if UV_ADV.
|
|---|
| 2267 | ! Dout(M3yadv) Write out horizontal ETA-advection, if UV_ADV.
|
|---|
| 2268 | ! Dout(M3hrad) Write out horizontal total radiation stress, NEARSHORE_MELLOR.
|
|---|
| 2269 | ! Dout(M3vrad) Write out vertical radiation stress, if NEARSHORE_MELLOR.
|
|---|
| 2270 | ! Dout(M3hvis) Write out horizontal total viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2271 | ! Dout(M3xvis) Write out horizontal XI-viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2272 | ! Dout(M3yvis) Write out horizontal ETA-viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2273 | ! Dout(M3yvis) Write out horizontal ETA-viscosity, if UV_VIS2 or UV_VIS4.
|
|---|
| 2274 | ! Dout(M3vvis) Write out vertical viscosity.
|
|---|
| 2275 | !
|
|---|
| 2276 | ! Time-averaged, active (temperature and salinity) and passive (inert) tracer
|
|---|
| 2277 | ! diagnostic terms, [1:NAT+NPT,Ngrids] values expected:
|
|---|
| 2278 | ! (if SOLVE3D and DIAGNOSTICS_TS)
|
|---|
| 2279 | !
|
|---|
| 2280 | ! Dout(iTrate) Write out time rate of change.
|
|---|
| 2281 | ! Dout(iThadv) Write out horizontal total advection.
|
|---|
| 2282 | ! Dout(iTxadv) Write out horizontal XI-advection.
|
|---|
| 2283 | ! Dout(iTyadv) Write out horizontal ETA-advection.
|
|---|
| 2284 | ! Dout(iTvadv) Write out vertical advection.
|
|---|
| 2285 | ! Dout(iThdif) Write out horizontal total diffusion, if TS_DIF2 or TS_DIF4.
|
|---|
| 2286 | ! Dout(iTxdif) Write out horizonta1 XI-diffusion, if TS_DIF2 or TS_DIF4.
|
|---|
| 2287 | ! Dout(iTydif) Write out horizontal ETA-diffusion, if TS_DIF2 or TS_DIF4.
|
|---|
| 2288 | ! Dout(iTsdif) Write out horizontal S-diffusion, if TS_DIF2 or TS_DIF4 and
|
|---|
| 2289 | ! rotated tensor (MIX_GEO_TS or MIX_ISO_TS).
|
|---|
| 2290 | ! Dout(iTvdif) Write out vertical diffusion.
|
|---|
| 2291 | !
|
|---|
| 2292 | !------------------------------------------------------------------------------
|
|---|
| 2293 | ! Generic User parameters.
|
|---|
| 2294 | !------------------------------------------------------------------------------
|
|---|
| 2295 | !
|
|---|
| 2296 | ! NUSER Number of User parameters to consider (integer).
|
|---|
| 2297 | !
|
|---|
| 2298 | ! USER Vector containing user parameters (real array). This array
|
|---|
| 2299 | ! is used with the SANITY_CHECK to test the correctness of
|
|---|
| 2300 | ! the tangent linear adjoint models. It contains information
|
|---|
| 2301 | ! of the model variable and grid point to perturb:
|
|---|
| 2302 | !
|
|---|
| 2303 | ! INT(user(1)): tangent state variable to perturb
|
|---|
| 2304 | ! INT(user(2)): adjoint state variable to perturb
|
|---|
| 2305 | ! [isFsur=1] free-surface
|
|---|
| 2306 | ! [isUbar=2] 2D U-momentum
|
|---|
| 2307 | ! [isVbar=3] 2D V-momentum
|
|---|
| 2308 | ! [isUvel=4] 3D U-momentum
|
|---|
| 2309 | ! [isVvel=5] 3D V-momentum
|
|---|
| 2310 | ! [isTvar=6] First tracer (temperature)
|
|---|
| 2311 | ! [ ... ]
|
|---|
| 2312 | ! [isTvar=?] Last tracer
|
|---|
| 2313 | !
|
|---|
| 2314 | ! INT(user(3)): I-index of tangent variable to perturb
|
|---|
| 2315 | ! INT(user(4)): I-index of adjoint variable to perturb
|
|---|
| 2316 | ! INT(user(5)): J-index of tangent variable to perturb
|
|---|
| 2317 | ! INT(user(6)): J-index of adjoint variable to perturb
|
|---|
| 2318 | ! INT(user(7)): K-index of tangent variable to perturb, if 3D
|
|---|
| 2319 | ! INT(user(8)): K-index of adjoint variable to perturb, if 3D
|
|---|
| 2320 | !
|
|---|
| 2321 | ! Set tangent and adjoint parameters to the same values
|
|---|
| 2322 | ! if perturbing and reporting the same variable.
|
|---|
| 2323 | !
|
|---|
| 2324 | !------------------------------------------------------------------------------
|
|---|
| 2325 | ! I/O NetCDF files parameters.
|
|---|
| 2326 | !------------------------------------------------------------------------------
|
|---|
| 2327 | !
|
|---|
| 2328 | ! NetCDF-4/HDF5 compression parameters for output files. This capability
|
|---|
| 2329 | ! is used when both HDF5 and DEFLATE C-preprocessing options are
|
|---|
| 2330 | ! activated. The user needs to compile with the NetCDF-4/HDF5 and MPI
|
|---|
| 2331 | ! libraries. File deflation cannot be used in parallel I/O for writing
|
|---|
| 2332 | ! because the compression makes it impossible for the HDF5 library
|
|---|
| 2333 | ! to exactly map the data to the disk location. For more information,
|
|---|
| 2334 | ! check NetCDF official website: www.unidata.ucar.edu/software/netcdf.
|
|---|
| 2335 | !
|
|---|
| 2336 | ! NC_SHUFFLE Shuffle filter integer flag. If non-zero, turn on shuffle
|
|---|
| 2337 | ! filter.
|
|---|
| 2338 | !
|
|---|
| 2339 | ! NC_DEFLATE Deflate filter integer flag, If non-zero, turn on deflate
|
|---|
| 2340 | ! filter at the level specified by the NC_DLEVEL parameter.
|
|---|
| 2341 | !
|
|---|
| 2342 | ! NC_DLEVEL Deflate filter level parameter (integer). If NC_DEFLATE is
|
|---|
| 2343 | ! non-zero, set the deflate level to this value. Must be
|
|---|
| 2344 | ! between 0 and 9.
|
|---|
| 2345 | !
|
|---|
| 2346 | !------------------------------------------------------------------------------
|
|---|
| 2347 | ! Input/output NetCDF file names (string with a maximum of 256 characters).
|
|---|
| 2348 | !------------------------------------------------------------------------------
|
|---|
| 2349 | !
|
|---|
| 2350 | ! Input file names:
|
|---|
| 2351 | !
|
|---|
| 2352 | ! GRDNAME Input grid file name.
|
|---|
| 2353 | !
|
|---|
| 2354 | ! ININAME Input nonlinear initial conditions file name. It can be a
|
|---|
| 2355 | ! re-start file.
|
|---|
| 2356 | !
|
|---|
| 2357 | ! ITLNAME Input tangent linear model initial conditions file name.
|
|---|
| 2358 | !
|
|---|
| 2359 | ! IRPNAME Input representer model initial conditions file name.
|
|---|
| 2360 | !
|
|---|
| 2361 | ! IADNAME Input adjoint model initial conditions file name.
|
|---|
| 2362 | !
|
|---|
| 2363 | ! FWDNAME Input forward solution fields file name.
|
|---|
| 2364 | !
|
|---|
| 2365 | ! ADSNAME Input adjoint sensitivity functional file name.
|
|---|
| 2366 | !
|
|---|
| 2367 | !
|
|---|
| 2368 | ! Nesting grids connectivity data:
|
|---|
| 2369 | !
|
|---|
| 2370 | ! NGCNAME Input nested grids contact points information file name. This
|
|---|
| 2371 | ! NetCDF file is currently generated using script:
|
|---|
| 2372 | !
|
|---|
| 2373 | ! matlab/grid/contact.m
|
|---|
| 2374 | !
|
|---|
| 2375 | ! from the ROMS Matlab repository. The nesting information
|
|---|
| 2376 | ! is not trivial and this Matlab scripts is quite complex. See
|
|---|
| 2377 | !
|
|---|
| 2378 | ! https://www.myroms.org/wiki/index.php/Nested_Grids
|
|---|
| 2379 | ! https://www.myroms.org/wiki/index.php/Grid_Processing_Scripts
|
|---|
| 2380 | !
|
|---|
| 2381 | ! for more information.
|
|---|
| 2382 | !
|
|---|
| 2383 | !
|
|---|
| 2384 | ! Input lateral boundary conditions and climatology file names:
|
|---|
| 2385 | !
|
|---|
| 2386 | ! BRYNAME Input open boundary data file name(s) per nested grid.
|
|---|
| 2387 | !
|
|---|
| 2388 | ! CLMNAME Input climatology fields file name(s) per nested grid
|
|---|
| 2389 | !
|
|---|
| 2390 | ! The USER has the option to split input data time records into several
|
|---|
| 2391 | ! NetCDF files, as many as required. If so, use a single line per entry
|
|---|
| 2392 | ! with a vertical bar (|) symbol after each entry, except the last one:
|
|---|
| 2393 | !
|
|---|
| 2394 | ! BRYNAME == my_bry_year1.nc |
|
|---|
| 2395 | ! my_bry_year2.nc
|
|---|
| 2396 | !
|
|---|
| 2397 | ! CLMNAME == my_clm_year1.nc |
|
|---|
| 2398 | ! my_clm_year2.nc
|
|---|
| 2399 | !
|
|---|
| 2400 | !
|
|---|
| 2401 | ! Input nudging coefficients file name:
|
|---|
| 2402 | !
|
|---|
| 2403 | ! NUDNAME Input nudging coefficients file name.
|
|---|
| 2404 | !
|
|---|
| 2405 | !
|
|---|
| 2406 | ! Input Sources/Sinks forcing file name:
|
|---|
| 2407 | !
|
|---|
| 2408 | ! SSFNAME River runoff data. This file is now separated from the
|
|---|
| 2409 | ! regular forcing files to allow manipulations over nested
|
|---|
| 2410 | ! grids. A particular nesting grid may or may not have
|
|---|
| 2411 | ! Sources/Sinks forcing.
|
|---|
| 2412 | !
|
|---|
| 2413 | ! For example, in an application with 3 nested grids but
|
|---|
| 2414 | ! with river forcing in grids 1 and 3 we would have:
|
|---|
| 2415 | !
|
|---|
| 2416 | ! LuvSrc == T F T
|
|---|
| 2417 | ! LtracerSrc == 2*T 2*F 2*T
|
|---|
| 2418 | !
|
|---|
| 2419 | ! SSFNAME == my_rivers_grid1.nc \
|
|---|
| 2420 | ! my_rivers_grid2.nc \
|
|---|
| 2421 | ! my_rivers_grid3.nc
|
|---|
| 2422 | !
|
|---|
| 2423 | ! Here, "my_rivers_grid2.nc" is a dummy name that will never
|
|---|
| 2424 | ! be processed in ROMS because of the logical switches are
|
|---|
| 2425 | ! FALSE the second grid.
|
|---|
| 2426 | !
|
|---|
| 2427 | !
|
|---|
| 2428 | ! Input forcing file(s) name:
|
|---|
| 2429 | !
|
|---|
| 2430 | ! NFFILES Number of unique forcing files per nested grid.
|
|---|
| 2431 | !
|
|---|
| 2432 | ! FRCNAME Input forcing fields file name per nested grid.
|
|---|
| 2433 | !
|
|---|
| 2434 | ! The USER has the option to enter several file names for forcing fields
|
|---|
| 2435 | ! and/or split input data time records for each nested grid. For example,
|
|---|
| 2436 | ! the USER may have different files for wind products, heat fluxes, tides,
|
|---|
| 2437 | ! etc. The model will scan the file list and will read the needed data
|
|---|
| 2438 | ! from the first file in the list containing the forcing field. Therefore,
|
|---|
| 2439 | ! the order of the file names is very important. It is also possible to
|
|---|
| 2440 | ! split input data time records into several NetCDF files.
|
|---|
| 2441 | !
|
|---|
| 2442 | ! Use a single line per entry with a continuation (\) or vertical bar (|)
|
|---|
| 2443 | ! symbol after each entry, except the last one:
|
|---|
| 2444 | !
|
|---|
| 2445 | ! NFFILES == 7 ! number of unique forcing files
|
|---|
| 2446 | !
|
|---|
| 2447 | ! FRCNAME == my_tides.nc \ ! tidal forcing
|
|---|
| 2448 | ! my_lwrad_year1.nc | ! net longwave radiation flux
|
|---|
| 2449 | ! my_lwrad_year2.nc \
|
|---|
| 2450 | ! my_swrad_year1.nc | ! solar shortwave radiation flux
|
|---|
| 2451 | ! my_swrad_year2.nc \
|
|---|
| 2452 | ! my_winds_year1.nc | ! surface winds
|
|---|
| 2453 | ! my_winds_year2.nc \
|
|---|
| 2454 | ! my_Pair_year1.nc | ! surface air pressure
|
|---|
| 2455 | ! my_Pair_year2.nc \
|
|---|
| 2456 | ! my_Qair_year1.nc | ! surface air relative humidity
|
|---|
| 2457 | ! my_Qair_year2.nc \
|
|---|
| 2458 | ! my_Tair_year1.nc | ! surface air temperature
|
|---|
| 2459 | ! my_Tair_year2.nc
|
|---|
| 2460 | !
|
|---|
| 2461 | !
|
|---|
| 2462 | ! Output file names:
|
|---|
| 2463 | !
|
|---|
| 2464 | ! GSTNAME Output GST analysis re-start file name.
|
|---|
| 2465 | ! RSTNAME Output re-start file name.
|
|---|
| 2466 | ! HISNAME Output history file name.
|
|---|
| 2467 | ! TLFNAME Output impulse forcing for tangent linear (TLM and RPM) models.
|
|---|
| 2468 | ! TLMNAME Output tangent linear file name.
|
|---|
| 2469 | ! ADJNAME Output adjoint file name.
|
|---|
| 2470 | ! AVGNAME Output averages file name.
|
|---|
| 2471 | ! DIANAME Output diagnostics file name.
|
|---|
| 2472 | ! STANAME Output stations file name.
|
|---|
| 2473 | ! FLTNAME Output floats file name.
|
|---|
| 2474 | !
|
|---|
| 2475 | !------------------------------------------------------------------------------
|
|---|
| 2476 | ! Input ASCII parameters file names.
|
|---|
| 2477 | !------------------------------------------------------------------------------
|
|---|
| 2478 | !
|
|---|
| 2479 | ! APARNAM Input assimilation parameters file name.
|
|---|
| 2480 | ! SPOSNAM Input stations positions file name.
|
|---|
| 2481 | ! FPOSNAM Input initial drifters positions file name.
|
|---|
| 2482 | ! BPARNAM Input biological parameters file name.
|
|---|
| 2483 | ! SPARNAM Input sediment transport parameters file name.
|
|---|
| 2484 | ! USRNAME USER's input generic file name.
|
|---|
| 2485 | !
|
|---|