

A scalable unstructured 3-D finite volume code for the shallow water equations

David Ham, Julie Pietrzak and Guus Stelling

Faculty of Civil Engineering and Geosciences

Delft University of Technology

Current Approach

- curvilinear grid.
- 82620 points.
- almost constant resolution.
- stepping on the coast.

Data courtesy of the National Institute for Coastal and Marine Environments (RIKZ).

Current Approach

curvilinear grid.
82620 points.
almost constant resolution.
stepping on the coast.

Data courtesy of the National Institute for Coastal and Marine Environments (RIKZ).

Unstructured grid

- 42050 points.
- highly configurable resolution.
- grid follows coastline.

Unstructured grid

- 42050 points.
- highly configurable resolution.
- grid follows coastline.

Element shape

The shallow water equations

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\mathrm{D}u_{\mathbf{d}}}{\mathrm{D}t} = \frac{\partial}{\partial \mathbf{d}} \int_{z'=z}^{z'=\eta} g dz' + \nu^{h} \left(\frac{\partial^{2}u_{\mathbf{d}}}{\partial x^{2}} + \frac{\partial^{2}u_{\mathbf{d}}}{\partial y^{2}} \right) \\ + \frac{\partial}{\partial z} \nu^{v} \frac{\partial u_{\mathbf{d}}}{\partial z} + (2\mathbf{\Omega} \times \mathbf{u}) \cdot \mathbf{d}$$

The continuity equation

 $\iiint_{g_i} \nabla \cdot \mathbf{u} \, dV = 0$

The continuity equation

$$\iiint_{g_i} \nabla \cdot \mathbf{u} \, dV = 0$$

$$\iint_{\Gamma g_i} \mathbf{u} \cdot \mathbf{n} \, dA = 0$$

The continuity equation

$$\begin{aligned} A_i \frac{\partial \eta_i}{\partial t} + \sum_{j \in S_i} \left((\mathbf{n} \cdot \mathbf{N})_{i,j} \sum_{k \in L_j} A_{j,k} u_{j,k} \right) &= 0 \\ A_i \eta_i^{n+1} &= A_i \eta_i^n - \theta \Delta t \sum_{j \in S_i} \left((\mathbf{n} \cdot \mathbf{N})_{i,j} A_j \cdot \mathbf{U}_j^{n+1} \right) \\ &- (1 - \theta) \Delta t \sum_{j \in S_i} \left((\mathbf{n} \cdot \mathbf{N})_{i,j} A_i \cdot \mathbf{U}_j^n \right) \end{aligned}$$

Momentum Equation

$$\begin{split} u_{j,k}^{n+1} &= F u_{j,k}^n - g \Delta t \left(G_j^{n+1} + H_j^n \right) \\ &+ \frac{\Delta t}{dz_{j,k}^n} \left(\nu_{j,k+\frac{1}{2}}^v \frac{u_{j,k+1}^{n+1} - u_{j,k}^{n+1}}{\Delta z_{j,k+\frac{1}{2}}^n} - \nu_{j,k-\frac{1}{2}}^v \frac{u_{j,k}^{n+1} - u_{j,k-1}^{n+1}}{\Delta z_{j,k-\frac{1}{2}}^n} \right) \end{split}$$

 $\mathbf{M}_{j}^{n}\mathbf{U}_{j}^{n+1} = B_{j}^{n} - \theta g \Delta t G_{j}^{n+1} \Delta \mathbf{Z}_{j}$

Pressure Discretisation

 G_j and H_j are linear functions on the set of surface heights such that $G_j + H_j$ is an approximation to $\frac{\partial p}{\partial \mathbf{n}_j}\Big|_j$.

For stability we require that, for a constant pressure field (ie constant surface height), $G_j = H_j = 0$.

Pressure Discretisation

 G_j and H_j are linear functions on the set of surface heights such that $G_j + H_j$ is an approximation to $\frac{\partial p}{\partial \mathbf{n}_j}\Big|_j$.

For stability we require that, for a constant pressure field (ie constant surface height), $G_j = H_j = 0$.

To obtain a symmetric positive definite free surface matrix, we may require $G_j = \alpha \left(\eta_{i(j,1)} - \eta_{i(j,2)} \right)$.

Orthogonal grid

$$G_{j} = \frac{\eta_{i(j,1)} - \eta_{i(j,2)}}{\|\mathbf{x}_{i(j,1)} - \mathbf{x}_{i,(j,2)}\|}$$
$$H_{j} = 0$$

Non-orthogonal grid

Non-orthogonal grid

Auxilliary point method.

Hydrostatic jump in a channel

Streamline tracking

Velocity field requirements

- 1. It must agree with known data.
- 2. It must be easy to integrate analytically.
- 3. The streamlines produced by integrating the field must not cross each other or closed boundaries.
- 4. It should satisfy the continuity equation everywhere.

A Linear Field

$$\mathbf{u}(\mathbf{x}) := \begin{bmatrix} a_x x + b_x \\ a_y y + b_y \end{bmatrix}$$

A Linear Field

$$\mathbf{u}(\mathbf{x}) := \begin{bmatrix} a_x x + b_x \\ a_y y + b_y \end{bmatrix}$$

Streamlines leaving and re-entering

Calculated streamlines for cell face velocities $u(2,3)\mathbf{n} = (0,-2)$, $u(3,2)\mathbf{n} = (2,0)$ and $u(2,2)\mathbf{n} = (0,0)$. The pseudo-velocity field is given by $\mathbf{u}(\mathbf{x}) = (x,-y)$.

Streamlines crossing

Demonstration - channel flow

Demonstration - channel flow

Demonstration - closed loops

Demonstration - closed loops

