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Antarctica
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The Amery Ice Shelf front
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Freezing point at Salinity of 34.4
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The ice-pump mechanism
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A Jade Iceberg
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Why are we interested in the Cavity beneath
the Amery Ice Shelf?

• The circulation controls the rates of melting and freezing underneath the
ice shelf.

• The circulation affects water mass formation in Prydz Bay and beyond

• Melting is an important way in which Antarctic glaciers lose mass (the other
is by calving at the ice front).

• Removal of an ice shelf by melting and/or calving may affect the rates at
which Antarctic glaciers flow, and hence affect the mass balance of ice over
the continent.

• How are the above affected by global warming, both in the past, and in the
future?

7



Models

• Determann/Gerdes (AWI), 1994: Idealised cavities

• Grosfeld/Gerdes (AWI/Bremen), 1997: Idealised cavities and Filchner-Ronne

• Gerdes/Determann/Grosfeld (AWI), 1999: Filchner-Ronne

• Grosfeld/Sandhager/Lange (Bremen/AWI/Munster), 2001:

Idealised cavity (→ Larsen + Flichner-Ronne) coupled with ice model

• Beckmann/Hellmer (AWI): Whole Southern Ocean (BRIOS2.2)

• Holland/Jenkins (New York/BAS):

Filchner-Ronne and Ross based on MICOM model.

• Williams/Warner/Budd (Antarctic CRC), 1998-2002:

Amery (Gerdes/Determann/Grosfeld model) - without tides.

• Hunter/Hemer (Antarctic CRC):

Amery (based on POM) - with and without tides.
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The Ice-Water Interface
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(∼Holland and Jenkins, 1999)

Freezing point:

TB = TB(SB, P )

Heat:

QW
T = (ET(TM−TB)+UTB)ρCp

= QI
T − UρL

Salt:

QW
S = (ES(SM − SB) + USB)ρ

= 0
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Bed elevation (•) and Ice Draft (all) measurement locations.
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Zonal Mean Bed Elevation and Ice Draft of Amery Ice Shelf
Cavity. (Dashed - A; Solid - B; Dash-Dot - C; Dotted - CADA)
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Bathymetry
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Ice Shelf Draft

500

1000

1500

2000

2500

66 68 70 72 74 76 78 80

−73

−72

−71

−70

−69

−68

−67

13



Modifications to POM for the Ice Shelf application:

• Define additional horizontal U, V and E masks for ice shelf

• Apply surface pressure to depress ocean surface by D (i.e. apply adjustment
D to all heights that are multiplied by g, except in baroclinic pressure and
buoyancy gradients).

• Dynamics at ice/ocean interface: invert bottom friction code (yields u*).

• Thermodynamics at ice/ocean interface: (2-equation formulation of Holland
and Jenkins, 1999 - removes third (salt) equation: SM = SB)

– Interface assumed to be at local freezing temperature (Tf) (converted
to potential temperature).

– Heat flux (wtsurf) assumed ∝ u∗(Tocean − Tf).

– Heat flux yields melting or freezing rate. vflux ∝ wtsurf

– Melting (freezing) leads to addition (removal) of freshwater at in-situ
freezing temperature (i.e. Additional heat and salt flux term).

– Add source/sink of water to volume conservation equation in external
mode.

– Set w(i, j, kb) = 0, reverse order of vertical integration of w and stop at
k = 2 (puts source/sink of water into top cell).
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Initial and Open BC’s

• Initial and Open Boundary conditions based on Winter conditions (deep
mixing) in Prydz Bay.

– Salinity of 34.5, Temperature at surface freezing temperature (−1.8976◦C)
- uniform throughout the water column.

– S and T are “cobbled” at open boundaries.

• Tidal elevations at OB’s are determined from tidal constituents (M2, S2, K1,
and O1) interpolated onto OB gridcells from CADA tide model (Padman et
al., 2002).

Runs include:

• Tides switched on and off - 4km and 8km resolution.

• Other initial temperatures (simulating global warming scenarios):

– Tf(surface) + 0.2◦C

– Tf(surface) + 1◦C
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Model Spin Up; No Tides

(Top layer: k=1; Bottom layer: k=10)
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Longitudinal Density Section (σθ):

No Tides
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Zonally-Integrated Streamfunction (Sv): No Tides

(Circulation clockwise around +ve features)
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Vertically-Integrated Streamfunction (Sv): No Tides

(Circulation clockwise around +ve features)
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Horizontal Currents in Top Layer: No Tides
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Freezing rate (ma−1) : No Tides

(Positive is freezing; bold separates freezing/melting)
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’Observed’ Freezing/Melting
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Vertically-Integrated Streamfunction (Sv): No Tides; +1◦C

(Circulation clockwise around +ve features)
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Freezing rate (ma−1) : No Tides; +1◦C

(Positive is freezing; bold separates freezing/melting)
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Mass Loss of Ice due to exchange with Cavity
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Average slope = 43Gta−1◦C−1 (c.f. 25Gta−1◦C−1; Williams et al., 2002)

An increase in mass loss of 40Gta−1 could remove the ice shelf in 1000 years
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Future Work

• Coupled cavity/ice shelf model (JH, Hobart)

• Upgraded ice draft from hydrostatics/altimetry and radar (JH, Hobart)

• Incorporation of frazil ice (JH, Hobart)

• Investigation of annual cycle (requires a sea-ice model or prescribed surface
fluxes in open ocean). (JH, Hobart; MH Galway)

• Model Intercomparison study for idealised ice-shelf domains (MH Galway)

– POM; Hemer - NUI, Galway, Ireland, Hunter - ACE CRC, Hobart

– Generalised coordinate Cox-Bryan model; Williams - NIWA, NZ

– MICOM; Holland, New York

– SPEM/SCRUM??; AWI
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Marine Modelling Centre, Martin Ryan Marine Institute
National University of Ireland, Galway

Personnel:

• 3 Permanent Staff

• 2 Post-Docs (as of Sept)

• 6 Post-grad students

Projects:

• Hydrodynamic model focussed on
the North-East Atlantic - Irish ter-
ritorial waters. (POM -> ROMS??)

• Operational forecasting model of
the Irish Sea (POM or POLCOMS)

• Flushing Studies of Irish Coastal
Waters (POM)

• Kinetics and transport of scallop and
sea-jelly plankton larvae (POM)
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