
Poor Man’s Computing Revisited

Alexander Shchepetkin, I.G.P.P. UCLA

Venice, Italy, October 2004

a follow-up presentation for Poor Man’s Computing: how much

power you can get from a Linux PC, Seattle, WA, August 2003

Poor Man’s lessons from the past
• Specifics of architecture: strong and weak points

• Software side of the story: availability, performance

• Specific issues of code optimization

• Comparison with SGI ORIGIN 2000, Sun Enterprise

Computer #1: 2 × 933 MHz Pentium IIIs on ASUS
CUV4X-D (VIA 694XP set), 1024MB PC-133 memory

hardware

• SMP-architecture (shared bus like SGI Power Challenge)

• complex instruction set (not a RISC processor)

• 32-bit architecture (addressing space is limited to 4GB)

• 80-bit long registers (!) allowing 32-, 64-, and 80-bit single, dou-
ble or extended-precision arithmetic. In the last case results are
truncated to 64 bit, when leaving registers.

• full-speed, 256 KB 8-way (!) set-associative cache

• 1.06 GB/sec memory bandwidth, 64-bit data bus, ≈ 70ns latency

software

• multi bootable: Linux Mandrake 8.2 ”OEM Standard” (running
2.4.18-8.1smp.mdk kernel); and Linux Mandrake 7.2 ”Complete”
(2.2.17smp kernel) operating systems; as well as Windows 2000.

• GNU gcc, g77 compilers (F77 but not F90); all FREE

• Intel icc and ifc compilers: F95 with Open MP support; FREE for
Linux only

• Lahey (Fujitsu) lf95 compiler, striped down version (no OpenMP sup-
port) $240; Complete version $640

• State of the art in early 2001, worthless today

Test Problem:

ROMS code (relevant features):

• parallel code using Open MP or MPI, with 2D subdomain decom-
position. Originally designed/optimized for SGI Origin 2000, since
them ported on many other platforms;

• number of subdomains may be set independently from the number
of CPUs used in OpenMP mode;

• mild amount of redundant computations occurs at the perimeter of
subdomains — typically involving no more than two ghost points.

• in Open MP mode, if there is more than one subdomain (tiles) per
processor, each thread sweeps its tiles in zig-zag order — a measure
designed to avoid/mitigate false sharing on Origin 2000, as well as
to improve reuse of cached data.

• all numerical features of ROMS

Model configuration

• 3/4 degree North - Equatorial Atlantic DAMEE configuration, 128×
128 × 20 grid (similar setup to Haidvogel et al, 2000) ⇒ 100MB
problem

Computational performance of ROMS code as a function of subdo-
main partitioning (blocking) policy on different hardware platforms for
3/4 degree Atlantic model (128×128×20 grid, 100MB storage). Hor-
izontal axis represent the number of subdomains, and specific block-
ing policy is written on each column in NSUB

X × NSUB
Y format (some

numbers of subdomains are repeated because they correspond to dif-
ferent policies). Vertical axis—computational performance — time
steps per minute of wall clock time. In all cases parallelization is
done via OpenMP and no adjustments to the code are made other
than choosing different number of subdomains. Strong dependency of
computation performance from number of subdomains for Intel plat-
form is explained by cache effects due to combination of small cache,
fast processors and limitation by memory bandwidth, which is by far
the dominant factor for optimization strategy in this case. For all

other platforms the effect is less significant, and, in fact the most
significant influence on performance can be traced to the side effects
due to shortening of innermost loops when decreasing subdomain size.
Nevertheless, for a properly optimized code (number of subdomains
is chosen to make subdomains sufficiently small to fit into cache),
even the previous generation of Intel platforms tends to outperform
the other computers presented here in terms of processing power per
CPU, despite the fact that its cost is only a small fraction of the cost
of others.

Same as before, but showing cases with up to 16 Origin 2000 CPUs
involved: the code scales perfectly to this number of processors and
it is clear that it is vector length which matters most for Origin 2000
performance: blocking of the first FORTRAN dimension causes per-
formance degradation, despite the potentially beneficial effect onto

cache utilization. Sun Enterprise generally shows much lesser depen-
dency on vector length which may be mostly explained by efficiency of
Sun compilers (note 195 MHz R10k of Origin 2000 delivers the same
performance as 400 MHz Sun Enterprise)

Poor Man’s experience:
• Linux operating systems were mature and robust at that time. Prob-

ably even earlier in 1999. It just took long time to recognize and
embrace it.

• Optimization strategies on Pentium PC are significantly different
from that for traditional workstations and supercomputers with ma-
jor accent placed on utilization of cache, and taking into account
limited memory bandwidth. Length of innermost loops (i.e., vector
loops) become much less important for PIII.

• subdomain partitioning of ROMS with multiple subdomains (tiles)
per processors can be used to solve cache management problem:
as paradoxically as it may sound, one needs parallel code to run it
efficiently on a laptop.

• For a properly optimized code 2 × 933 MHz PIIIs deliver similar
(slightly better) performance as three 195 MHz R10k of Origin
2000.

Computer #2: 2 × 2.4 GHz Intel Xeon CPUs on Super-
micro P4DCE+ board (i860 chip set), 1024MB memory

• PC800 RDRAM memory ⇒ 3.2 GB/sec bandwidth; 40ns latency

• 512 KB cache; 4x cache line relatively to PIII

• Linux Mandrake 9.1 (kernel 2.4.21-024smp/ent)

• Intel ifc/icc 6.0.1-304 and 7.1.0xx compilers

• Cost to build $1700 (beginning 2003)

Test Problem:
ROMS code, same as above;
1/2 degree Pacific model, 384× 224× 30 grid, ⇒ 800MB+ problem

Performance 1/2 degree, 384×224×32 grid Pacific model on dual 2.4
GHz Xeon machine: Overall, with proper choice of partitions the dual
Xeon machine runs as fast as to 12 195MHz R10k CPUs of Origin
2000. It takes 10 hours of computing (wall clock) to get one model
year of simulation, which makes it viable choice (time step 7200 sec;
mode splitting ratio ndtfast=78; FB barotropic mode).

What did we learn:

• Cache utilization has major effect. Dual-Xeon machine CPUs are
in more ”data-hungry” situation that PIIIs above: it looks like per-
CPU computational speed has increased by a factor of 4+, while
its clock speed only in 2.5 and memory bandwidth by a factor of 3.

• With introduction of P4 vector length is back into consideration
again (P4 has 4× longer cache line; pipelined regime)

• The optimal partitioning corresponds to the best compromise trying
to satisfy three demands: (1) storage size corresponding to one sub-
domain should fit into processor cache to facilitate efficient reuse of
cached data. (2) a mild amount of redundant operations takes place
near the perimeter of each subdomain, hence blocking refinement
increases the actual number of computations, bringing the ”perime-
ter vs. area” consideration; (3) Pentium 4 and P4/Xeon processors
use pipelined regime to achieve efficient computations, and in addi-
tion to that they must load consecutive double-precision numbers in
quads (in Intel’s terminology this is called ”vectorization”) for effi-
cient memory access. Pipelining require long inter-most loops (our
experience shows that these loops must exceed ∼100 iterations to
avoid penalties for side effects), and quad-loading stipulates that
innermost loops correspond to the first Fortran dimension.

• Compromise is very compromising: none of the three requirements
is anywhere close to satisfaction. Scaling is no better than dual-PIII.

• Best policy results subdomain size of 96×4 points — try MPI code
with 4-point wide subdomains + 2 ghost points on each side!

• Overall, for a properly optimized code Dual 2.4GHz Xeon runs as
fast as 12 × R10k’s.

Poor Man’s Computing Today
Computer #3: NCSA Linux Cluster made of dual 3.06GHz
Xeon Dell PowerEdge 1750 nodes connected via Myranet
network. This cluster is also known as tungsten.

running Red Hat Enterprise Linux, kernel 2.4.20-31.9smp. Intel For-
tran compiler 7.1 and 8.0 (make sure release 8.0.039 or later, earlier
versions of 8.0.x are known to miss-interpret OMP$ THREADPRIVATE (!)).

[This work was done before July-august 2004 upgrade of NCSA Xeon
Cluster, hence all results reported here are a obtained using 3.06GHz
CPUs with 512K L2 caches and 533MHz front bus speed.]

Performance of ROMS code on a Dell PowerEdge 1750 server with two
Intel Xeon 3.06GHz/512Kb cache processors using one (the second
kept idle) to both CPUs. The test problem is ROMS 1/2-degree
Pacific Ocean model on 384× 224× 30 (the same as above).

Compared with our home-made dual-Xeon machine, the PowerEdge
1750 node has 1.25 times faster CPU clock speed (3.06 vs 2.5); 4/3
times more memory bandwidth due to 533 Mhz front bus; and 2.1
times better memory latency (CAS 2.5 at 133 MHz ⇒ 18.75ns vs.
40 ns).

Results are not fundamentally different: as before, there is a strong
dependency of computational performance (as well as scaling from 1 to
2 CPUs) from the number of subdomains and blocking. It is ≈ 30%
faster, however optimum partitioning leans to slightly longer vector
length: 3 × 56. Most likely this is attributed to significantly smaller
memory latency.

Given that the total storage size for this problem is 850 MBytes, an
intuitive ”rule of thumb” tells that 1700 subdomains are needed to

fit into 512Kb cache. In practice the number is significantly smaller
— about 160. This is because not all model arrays are being used in
each parallel region, and, more importantly, the best effort is already
made to organize loops within subdomains in cache-friendly manner:
the operations are arranged sweeping either in horizontal x− y or ver-
tical x − z planes with intermediate results placed in two-dimensional
(almost never three-dimensional) tile-sized scratch arrays, so that suc-
cessful cache management is achieved when a sufficient number of
these rather small size scratch arrays fit into cache.

To illustrate the significance of cache blocking within the internal
code, we repeat a similar experiments, but with a 2D problem, where
all cache management relies entirely on subdomain decomposition.
This is a 768×256-grid two-dimensional Soliton problem run for 4800
time steps.

The behavior is overall similar to the 3D, but with larger contrast
coarse- and fine blocking, especially in dual-CPU case. This problem
uses total of 57 MBytes of memory, and unlike in 3D case, the optimum
blocking 8× 64 results in ≈ 115Kb per subdomain, which entirely fits
into cache. The best subdomain dimension ∼ 100 × 4 coincides with
that for 3D problem.

Cluster Computing
It has to be MPI...

Scaling performance of ROMS code on NCSA Xeon cluster. The
same 1/2-degree Pacific Ocean model on 384×224×30 grid, and the
duration of each run is 512 time steps. All these test runs are obtained
using purely MPI-mode.

number of CPUs 4 8 12 16 24
partition 2×2 2×4 3×4 4×4 3×8
run time, seconds 4130 2154 1118 868 521
time steps/minute 7.44 14.2 27.5 35.4 58.9
time steps/minute/node∗ 3.71 3.57 4.57 4.42 4.91

number of CPUs 32 48 64 96
partition 4×8 3×16 8×8 6×16
run time, seconds 413 241 173 139
time steps/minute 74.4 127.5 177.5 221.0
time steps/minute/node∗ 4.65 5.29 5.53 4.60

Term node labeled by asterisk ∗ in the last line means the whole dual-
CPU PowerEdge 1750 node, hence node=2CPUs

I/0 during these runs is done from/into separate files individually for
each MPI node using the standard (non-parallel) netCDF library. This
leads to scalable I/O, however pre- and post-processing is required to
convert the data into more a conventional form.

The machinery and the code exhibit overall good scaling, which is
manifested nearly proportional decrease of run time with the number of
CPUs, as well as non-degrading per-node computational performance
— shown on the bottom line. However the per-node performance
above is significantly lower than the 8.9 time steps/minute of the
properly optimized Open MP code running on 2 CPUs (just one node
of the Linux cluster) using fine 3 × 56 partitioning to better utilize
processor’s cache. Mild super-linear scaling and partial recovery of per-
node performance on 48 and 64 CPUs above (bottom line, highlighted)
is attributed to cache effects due to effective reduction of problem size
solved on each node.

• Scalable parallel I/O in imperative

Conclusion

• Since 1997, when Origin 2000 was introduced, clock speed
workstation-class computers increased by a factor of 5 or so (200
MHz R10k → 800 MHz R14k for SGI; and 330 MHz UltraSparkIIi
then → 900 MHz today for Sun), while performance of PC hardware
has been increased more that 15 times

• Although memory bandwidth of PCs has been improved by a factor
of 10 in last five years — 500...666MB/sec of PC66...PC100 in
1999 → 1.06 GB/sec of PC133 (mainstream PIII generation PCs of
year 2000) → 2.1 GB/sec of DDR PC2100 → 3.2 GB/sec RDRAM
of first P4 → 6.4 GB/sec of dual-channel DDR (Intel i875/i865
sets) of today — still, modern PC are even more miss-balanced
than their predecessors.

• SMP designs double processor power, but memory bandwidth re-
mains the same, which limits scalability.

• Xeon gap: P4/Xeon loses to ordinary P4 front bus speed. Recently
and today it was/is 533 vs. 800; a couple of month ago a 800MHz
version of Xeon ”Nocona” has been released, but regular P4 is
heading toward 1066. This exacerbates the miss-balance to
roughly 3:1 (ouch!) of dual-Xeon vs. single-P4 ability to perform
arithmetic operations per load-stores.

• Memory interleaving (common design to boost bandwidth for su-
percomputers) appears in modern commodity PCs in form of dual-
channel RDRAM (2001 i850/i860 chip sets) and dual-channel DDR
of year 2003 (i875/i865, E750x, as well as SerwerWorks sets).
There is only 2-way interleaved systems on the market today).

• Single 3.2GHz/800MHz front bus/1M cache P4 + i875P (say an
Intel D875PBZ board) + dual-channel DDR (must be CAS 2(!))
memory matches performance our home-made dual-Xeon machine.

• In our experience Intel’s hyper-threading (R,TM) technology does
not give any advantage for parallel computing: whether it in dual-
Xeon or single-P4, performance was always better is that thing was
turned off in BIOS. Nevertheless, Intel’s news about dual-core CPUs
(real ones, not fake) is quite exiting.

• Cost-performance consideration favors single-processor PCs for
Linux clusters

• A typical MPI code with one subdomain — one processor strategy
is out of cache and would not perform/scale well on a PC hardware,
dual- or single-processor

• Similar cache effects were observed on IBM p690 (1.3GHz Power4
CPUs with shared 3 level caches — turns out that fitting into L2
cache is of the most importance), SGI Altix (Intel Itanium 2 CPUs,
64-bit Intel EFC compiler), AMD Opteron (2 GHz, 1M L2, In-
tel IFC/Portland Group PGF compilers for 32-/64-bit respectively),
and MacIntosh G5 (2 GHz, 1M L2,IBM XLF compiler). In four cases
blocking into ∼ 120...20×4-grid point tiles shows the optimum, with
64-bit machines care a bit more about vector length.

• Intuitive rule of thumb — the total memory divided by the number
of subdomains should fit into L2 cache — does not provide an
accurate guideline for today’s ROMS code. It is obscured by heavy
usage of private scratch arrays [4 3D and up to 27 2D arrays (27
in visc3D GP and 16 step2D FB routines)].

• Comparison of ROMS performance Open MP and MPI modes indi-
cates that there is underutilization of internal potential of CPU in
current implementation of MPI code. This is not a principal inherent
drawback of MPI parallelization framework, but rather due to the
fact that current implementation sticks to single-subdomain — sin-
gle CPU policy in MPI, while our current Open MP implementation
is free of this restriction. This needs to be addressed.

Afterthoughts
..At the early days of ocean modeling the computers were too small
to hold the whole problem in memory, so the codes were designed to
run using disk as the primary storage. Memory was fast but small, and
disk is much larger, but is also much slower, so coding was an art of
making as much computing as possible before a new portion of data
needs to read from the disk. Now history came full cycle, except that
what used to be memory now is called cache, and what used to be
disk now became memory. The art remains.

...Today’s supercomputer centers have most of their power

in clusters and getting more (80% at NCSA today). Does

it look like Poor Man’s experience becomes that of Rich

Man too?

