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of spin-up from climatology. At the coarse resolution that is typical
of the ocean components of CMIP5 coupled climate models (nom-
inally 1! resolution), an ocean model only resolves the deformation
radius in deep water in a narrow band within a few degrees of the
equator; any important extratropical eddy effects will need to be
parameterized. At a much higher resolution, such as a 1/8! Merca-
tor grid, the deformation radius is resolved in the deep ocean in the
tropics and mid-latitudes, but even in this case eddies are not re-
solved on the continental shelves or in weakly stratified polar lat-
itudes. An unstructured and adaptive grid ocean model could help
to address this issue, but such models are not yet in widespread
use for global ocean climate modeling, and even then computa-
tional speed may dictate the use of models that do not resolve
mesoscale eddies everywhere.

In this paper, a series of numerical simulations of a variant of
the Phillips (1954) model of baroclinic instability are used to
examine the effects of resolution on a numerical model’s ability
to exhibit the net overturning circulation driven by mesoscale ed-
dies. The effects of a commonly used parameterization of eddy ef-
fect, both on the models’ explicitly resolved eddies and on the net
overturning, are examined. Based on these results, a simple pre-
scription is offered for the typical situation in global ocean mod-
els, where eddies are resolved in only part of the domain and in
that portion it is desired that the model be allowed to explicitly
simulate their effects, but in the remainder of the domain that
eddies be entirely parameterized. Specifically, the eddy diffusivi-
ties should be multiplied by a ‘‘resolution function’’, ranging from
0 to 1, of the ratio of the baroclinic deformation radius to the
model’s effective grid spacing, eD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2ð Þ=2

p
. The resolu-

tion function that works best for the cases presented here rapidly
makes a transition from 1 when this ratio is greater than a value
of about 2 (the exact value is not very important and can be cho-
sen to be higher) to 0 for larger values. In the idealized case pre-
sented here, this prescription is found to give a reasonable
representation of the net eddy-driven overturning over a wide
range of resolutions.

2. The test configuration and model

Phillips (1954) analyzed the baroclinic instability that arises in
a simple two-layered quasigeostrophic model of a geostrophically
sheared flow in a reentrant channel. This problem has the advan-
tage that many of the properties of the eddies, including necessary
conditions for the growth of instabilities, the growth rate, energet-
ics and vertical structure of the exponentially growing linear
modes can be calculated analytically, as has been documented in
many textbooks on geophysical fluid dynamics (e.g. Pedlosky,
1987; Vallis, 2006).

This study examines instabilities of a stacked shallow water
variant of the Phillips problem, which is described by the momen-
tum and continuity equations:
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Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 & 10'5 s'1

and 9.69 & 10'5 s'1, following the common b-plane approxima-
tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
Mn ¼ p=q0 þ gz, in the two layers are given by a vertical integration
of the hydrostatic equation, so that

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8!model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65!N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1! and 1/8! resolutions.
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Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 & 10'5 s'1

and 9.69 & 10'5 s'1, following the common b-plane approxima-
tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
Mn ¼ p=q0 þ gz, in the two layers are given by a vertical integration
of the hydrostatic equation, so that

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8!model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65!N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1! and 1/8! resolutions.
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tage that many of the properties of the eddies, including necessary
conditions for the growth of instabilities, the growth rate, energet-
ics and vertical structure of the exponentially growing linear
modes can be calculated analytically, as has been documented in
many textbooks on geophysical fluid dynamics (e.g. Pedlosky,
1987; Vallis, 2006).

This study examines instabilities of a stacked shallow water
variant of the Phillips problem, which is described by the momen-
tum and continuity equations:
@un

@t
þ f þ k̂ %r& un

" #
& un ¼ 'r Mn þ

1
2

unk k2
$ %

'r % T' dn2cD u2k ku2; ð1Þ

@hn

@t
þr % hnunð Þ ¼ 3' 2nð Þ c g3=2

x ' g3=2;Ref

" #
'r % Khrg3=2

" #h i
:

ð2Þ

Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
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of the hydrostatic equation, so that
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on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
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What vertical resolution is needed? 

The primary purpose of the vertical grid is to capture the 
vertical structure of horizontal flows. 

The vertical structure of horizontal flows can be 
estimated from the baroclinic modal basis functions. 
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of the ocean components of CMIP5 coupled climate models (nom-
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tropics and mid-latitudes, but even in this case eddies are not re-
solved on the continental shelves or in weakly stratified polar lat-
itudes. An unstructured and adaptive grid ocean model could help
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Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 & 10'5 s'1
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tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
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of the hydrostatic equation, so that

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8!model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65!N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1! and 1/8! resolutions.
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Sigma coordinates???? 

For mode-m, Δz/H < 1/6m 



Primary purpose of the vertical grid is to resolve horizontal flows 

50 z-levels for first mode, 25 levels per additional mode 

Minimise subjectivity in ocean modelling 


