Sustained basal mass loss after the 2010 calving event of the Mertz Glacier

Cougnon Eva^{1,2,3}, Galton-Fenzi B.^{4,3}, Hunter J.³, Williams G.³, Rintoul S.^{2,3}, Legrésy B.², Fraser A.²

¹Institute for Marine and Antarctic Studies, Quantitative Marine Science Program, University of Tasmania ²Commonwealth Scientific and Industrial Research Organisation (CSIRO) ³Antarctic Climate & Ecosystems Cooperative Research Centre ⁴Australian Antarctic Division

17 October 2016

Introduction		

MOTIVATIONS

AABW variability

• Antarctic Bottom Water (AABW) freshening and contracting [e.g.: Rintoul 2007; Purkey and Johnson 2012; Aoki et al. 2013; van Wijk and Rintoul 2014]

van Wijk and Rintoul, 2014 (GRL)

0000000		

MOTIVATIONS

AABW variability

• Antarctic Bottom Water (AABW) freshening and contracting [e.g.: Rintoul 2007; Purkey and Johnson 2012; Aoki et al. 2013; van Wijk and Rintoul 2014]

Possible causes:

- freshening of the shelf water
- reduction in formation rate
- change of bottom water properties

van Wijk and Rintoul, 2014 (GRL)

000000		

How is AABW formed and where?

Atmospheric cooling, brine rejection and interaction with Antarctic ice shelves

Adapted from Galton-Fenzi et al. 2012 (JGR)

0000000		

How is AABW formed and where?

- Weddell Sea
- Adélie Land
- $\bullet~{\rm Ross}$ Sea
- Cape Darnley

INTRODUCTION		

- high rate of sea ice production due to intense latent heat polynya
- high export of Dense Shelf Water (DSW)
- contributes to Antarctic Bottom Water formation (AABW)

00000000		

Mertz Glacier Polynya

• high rate of sea ice production due to intense latent heat polynya

Tamura et al. 2012, Nat. Com.

00000000		

Mertz Glacier Polynya

- high rate of sea ice production due to intense latent heat polynya
- the Mertz Glacier Tongue calved in 2010, loosing almost half of its size
- $\bullet~14\mathchar`-20$ % decrease in sea ice production

Tamura et al. 2012, Nat. Com.

00000000		

Mertz Glacier Polynya

- high rate of sea ice production due to intense latent heat polynya
- the Mertz Glacier Tongue calved in 2010, loosing almost half of its size
- 14-20 % decrease in sea ice production

Lescarmontier 2012 (PhD thesis)

0000000		

Mertz Glacier Polynya

• water properties have changed on the continental shelf following the calving event

Model ••••	

- Based on a modified version of the Regional Ocean Modeling System (ROMS; [Shchepetkin and McWilliams 2005]
- Includes:
 - ocean/ice shelf thermodynamics [Dinniman et al. 2007]
 - Three-equations formulation [Holland and Jenkins 1999] based on heat and salt conservation, and a linearised version of the freezing temperature (as a function of salinity and pressure)

0000	

- Based on a modified version of the Regional Ocean Modeling System (ROMS; [Shchepetkin and McWilliams 2005]
- Includes:
 - ocean/ice shelf thermodynamics [Dinniman et al. 2007]
 - Three-equations formulation [Holland and Jenkins 1999] based on heat and salt conservation, and a linearised version of the freezing temperature (as a function of salinity and pressure)
 - terrain following vertical levels with higher resolution at the bottom and the surface (below ice shelf) to better estimate the melt rate

Model	
0000	

- Based on a modified version of the Regional Ocean Modeling System (ROMS; [Shchepetkin and McWilliams 2005]
- Includes:
 - ocean/ice shelf thermodynamics [Dinniman et al. 2007]
 - frazils thermodynamics [Galton-Fenzi et al. 2012]
 - growth of frazil crystal increases salinity
 - efficient at removing supercooling

Adapted from Galton-Fenzi et al. 2012 (JGR)

Model ○○○●	

- Based on a modified version of the Regional Ocean Modeling System (ROMS; [Shchepetkin and McWilliams 2005]
- Includes:
 - ocean/ice shelf thermodynamics [Dinniman et al. 2007]
 - frazils thermodynamics [Galton-Fenzi et al. 2012]
- Forcing:
 - ECCO2 climatology for lateral boundaries (potential temperature, salinity and velocity)
 - surface forcing: heat and salt fluxes from SSM/I observations [Tamura et al. 2016]

	••••••••••••	

MERTZ MODEL AND GENERAL OCEAN CIRCULATION

	00000000	

INTERANNUAL VARIABILITY PRE-CALVING – 1992-2007

Cougnon et al. 2013 (JGR-Oceans)

Next step:

• How a change in icescape impacts on the melt rate and local oceanography?

	00000000	

MODEL DESCRIPTION – PRE- AND POST-CALVING SET UP

- Based on a modified version of the Regional Ocean Modeling System (ROMS; [Shchepetkin and McWilliams 2005]
- Includes:
 - ocean/ice shelf thermodynamics [Dinniman et al. 2007]
 - frazils thermodynamics [Galton-Fenzi et al. 2012]
- Forcing:
 - ECCO2 climatology for lateral boundaries (potential temperature, salinity and velocity)
 - surface forcing: heat and salt fluxes from SSM/I observations [Tamura et al. 2016]

• Pre- and post-calving set up:

- using one year climatology as forcing (spinup and run)
- 2009 pre-calving and 2012 post-calving (relatively stable icescape)
- simplified analytic tidal forcing at the lateral boundaries (M2, S2, K1, O1 are adjusted to be periodic in 14 days [Pingree and Griffiths 1981])

	0000000	

PRE- AND POST-CALVING ICESCAPE

	0000000	

PRE- AND POST-CALVING CUMULATIVE SEA ICE PRODUCTION

	000 00 0000	

PRE- AND POST-CALVING BASAL MASS LOSS

Ice Shelf	PRE	POST	% area	% mass loss
	(Gt yr ⁻¹)	(Gt yr 1)	change	change
Total	23.8±2	20.8±3	-19%	-14%
Mertz	5.6±0.5	6.0±1.0	-42%	-7%
Ninnis	0.6±0.4	1.3±0.8	0%	+117%
Cook	7.3±1.4	4.5±1.7	0%	-38%
B9B	5.3±0.9	0.6±0.1	-69%	-89%

Basal melt rate (m yr⁻¹)

- Total mass loss does not change significantly
- Mertz mass loss unchanged while the area available for melting has decreased by 42% (increased in area-averaged melt of 89%)
- Most of the Mertz basal melting occurs for ice deeper than 900 m:
 - 40% of the mass loss pre-calving
 - 54% of the mass loss pre-calving
- B9B pre-calving has a similar basal mass loss than the Mertz

	000000000	

	0000000000	

	0000000000	

	000000000	

Adélie depression:

- potential temperature is almost unchanged – deep convection
- bottom freshened by 0.11 decrease in polynya intensity

	Summary •0

SUMMARY

- B9B iceberg in the model (pre-calving simulation) insulate and precondition water masses that reach the Mertz and Ninnis cavities
- change in icescape and associated decrease in sea ice production lead to an increase in area-averaged basal melt rate of the Mertz Glacier Tongue of 89% (sustained basal mass loss)
- no significant changes in basal mass loss (fresh water input) for the entire model domain (pre- and post-calving)
- polynya activity post-calving along the coast west of the Mertz Glacier Tongue is still strong enough to homogenise the whole water column
 - Dense Shelf Water within the Adélie depression (main reservoir pre-calving) decreased by $\sim 80\%$

MODEI

Results

THANK YOU

Acknowledgements:

- * Takeshi Tamura (NIPR, Japan) * National Computational Infrastructure (Australia)
- * Tasmanian Partnership for Advanced Computing (Australia)

Amiralian Government Department of the Environment and Energy Australian Americ Division