ROMS 4D-Var: Tutorial

Andy Moore¹ & Hernan Arango² 1. Dept. of Ocean Sciences, University of California SantaCruz 2. Dept. of Marine and Coastal Sciences, Rutgers University

Outline

- Available online resources
- An overview of ROMS 4D-Var
- Assessment of Observing Systems

Available Online Resources

- 4D-Var tutorials on the ROMS Wiki:
- https://www.myroms.org/wiki/4DVar_Tutorial_Introduction
- Matlab scripts for most tasks are available in the ROMS repository
- Publications: See bibliography at the end

An Overview of ROMS 4D-Var

- Basics of data assimilation
- Important ingredients of ROMS 4D-Var
- Covariance models
- Preconditioning
- Conjugate gradients
- New developments

Covariance Modeling

- $B_{\!\scriptscriptstyle N}$ = initial condition $\it prior$ (or background) error
- covariance matrix
- B_f = surface forcing *prior* error covariance matrix B_b = open boundary condition *prior* error covariance

matrix **Q** = *prior* model error covariance matrix

Each covariance matrix is factorized according to:

 $\mathbf{B} = \mathbf{K}_{\mathbf{h}} \boldsymbol{\Sigma} \mathbf{C} \boldsymbol{\Sigma}^{\mathrm{T}} \mathbf{K}_{\mathbf{h}}^{\mathrm{T}}$ (Weaveret al., 2005)

 \mathbf{C} = univariate correlation matrix

 $K_b = \text{minimum factor metabolisment}$ $K_b = \text{minimum factor or standard deviations (s4dvar.in; STDname)}$ $K_b = \text{multivariate balance operator (<math>B_x \text{ only}$) (#fdef BALANCE_OPERATOR)}

Correlation Models

C is further factorized as:

 $\mathbf{C} = \mathbf{\Lambda} \mathbf{L}_{\mathbf{v}}^{1/2} \mathbf{L}_{\mathbf{h}}^{1/2} \mathbf{W}^{-1} \mathbf{L}_{\mathbf{h}}^{T/2} \mathbf{L}_{\mathbf{v}}^{T/2} \mathbf{\Lambda}^{T}$ (Weaver and Courtier, 2001)

W = diagonal matrix of grid box volumes L_h = horizontal correlation function model L_v = vertical correlation function model Λ = matrix of normalization coefficients (s4dvar.in; NRMname)

 L_h and L_v are based on solutions of 2D and 1D pseudo diffusion equations respectively:

 $\partial \eta / \partial t - \kappa_h \nabla^2 \eta = 0$ $\partial \eta / \partial t - \kappa_v \partial^2 \eta / \partial z^2 = 0$

Covariance Modeling

 $\mathbf{C} = \mathbf{\Lambda} \mathbf{L}_{\mathbf{v}}^{1/2} \mathbf{L}_{\mathbf{h}}^{1/2} \mathbf{W}^{-1} \mathbf{L}_{\mathbf{h}}^{T/2} \mathbf{L}_{\mathbf{v}}^{T/2} \mathbf{\Lambda}^{T}$

 $\pmb{\Lambda}$ ensures that the range of $\pmb{\mathsf{C}}$ is ±1.

Suppose that x is divided into a balanced and unbalanced contribution: $x\!=\!x\!\!\times\!\!+\!x_u$

Examples of balance: geostrophy, hydrostatic

 $(\mathbf{B}_{x})_{u} = \boldsymbol{\Sigma} \mathbf{C} \boldsymbol{\Sigma}^{\mathrm{T}}$ $\mathbf{B}_{x} = \mathbf{K}_{b} (\mathbf{B}_{x})_{u} \mathbf{K}_{b}^{\mathrm{T}}$

Preconditioning

Analysis: $\mathbf{z}_{a} = \mathbf{z}_{b} + \mathbf{K}\mathbf{d}$ Gain (dual) (#if defined W4DPSAS & defined RPCG): $\mathbf{K} = \mathbf{B}\mathbf{G}^{\mathrm{T}} \left(\mathbf{R}^{-1}\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}} + \mathbf{I} \right)^{-1} \mathbf{R}^{-1}$

Gain (primal) (#ifdef IS4DVAR):

$$\mathbf{K} = \mathbf{B}^{1/2} \left(\mathbf{I} + \mathbf{B}^{-T/2} \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G} \mathbf{B}^{-1/2} \right)^{-1} \mathbf{B}^{1/2} \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1}$$

Summary of ROMS 4D-Var Input and Output Files

Input files:

- INIname background initial conditions (ocean.in)
- STDname background error stds (s4dvar.in)
- NRMname background error covariance normalization factors (s4dvar.in) •
- . OBSname – observations (s4dvar.in)

Output files:

- FWDname background circulation estimate history file (ocean.in)

- HISname analysis circulation estimate history file (ocean.in)
 ADJname Lanczos vectors for primal 4D-Var (ocean.in)
 MODname Diagnostics for 4D-Var & Lanczos vectors for dual 4D-Var (s4dvar.in)

New Developments

- DART-ROMS: Community code Ensemble Kalman Filter for ROMS
 Long window 4D-Var
 DD-4D-Var (NASDAC-Arcucciet al.)

Add boundary conditions for each tile to cost function.

Time interval can be treated in the same way.

Assessment of Observing Systems

- Adjoints for sensitivity analysis
- Quantifying observation impacts on analyses & forecasts
- Examples
- Practical matters
- Array modes

Adjoint Sensitivity Analysis NLROMS advances the state vector x forward in time: $\mathbf{x}(t) = M(\mathbf{x}(0))$ Consider a function f(x) of the state vector x: $f(\mathbf{x} + \delta \mathbf{x}) = f(\mathbf{x}) + \delta \mathbf{x}^{\mathrm{T}} \partial f / \partial \mathbf{x}$ Adroms $=f(\mathbf{x}) + \delta \mathbf{x}^{\mathrm{T}}(0)\mathbf{M}^{\mathrm{T}} \partial f/\partial \mathbf{x}$ So the sensitivity of f(x) to changes in x(0) is given by:

 $\partial f / \partial \mathbf{x}(0) = \mathbf{M}^{\mathrm{T}} \partial f / \partial \mathbf{x}$

Adjoint operators provide sensitivity information

Adjoint Sensitivity Analysis

- cpp options: AD_SENSITIVITY AD_IMPULSE
- FORWARD_READ FORWARD_MIXING

- Input files: FWDname background circulation for ADROMS (ocean.in)
- ADSname $\partial f / \partial x$ for ADROMs forcing (ocean.in)

Output files:

• ADSname - $\partial f/\partial \mathbf{x}(0)$ sensitivity information (ocean.in)

Observation Impact Analysis

The gain matrix K can be reconstructed from the Lanczos vectors computed during 4D-Var $% \left({{\mathbf{F}}_{\mathbf{r}}^{T}}\right) =\left({{$

For example, dual 4D-Var (#if defined W4DPSAS & defined RPCG)

$$\mathbf{K} = \mathbf{B}\mathbf{G}^{\mathrm{T}}\mathbf{V}_{\mathrm{m}}\mathbf{T}_{\mathrm{m}}^{-1}\mathbf{V}_{\mathrm{m}}^{\mathrm{T}}\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}}\mathbf{R}^{-1}$$

In which case:

 $\Delta I = \mathbf{d}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G} \mathbf{B} \mathbf{G}^{\mathrm{T}} \mathbf{V}_{\mathrm{m}} \mathbf{T}_{\mathrm{m}}^{-1} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \mathbf{G} \mathbf{B} \partial I / \partial \mathbf{x} |_{\mathbf{x}_{\mathrm{m}}}$

Observation Impact Analysis $\Delta I = \mathbf{d}^{\mathrm{T}} \mathbf{P}^{-1} \mathbf{C} \mathbf{P} \mathbf{C}^{\mathrm{T}} \mathbf{V}^{\mathrm{T}} \mathbf{T}^{-1} \mathbf{V}^{\mathrm{T}} \mathbf{C} \mathbf{P} \frac{\partial U}{\partial \mathbf{v}^{\mathrm{T}}}$

$$\Delta I = \mathbf{a} \ \mathbf{K} \ \mathbf{GBG} \ \mathbf{V}_{\mathrm{m}} \mathbf{I}_{\mathrm{m}} \ \mathbf{V}_{\mathrm{m}} \mathbf{GBOI} / \partial \mathbf{X}_{\mathbf{x}_{b}}$$

$$= \left(\mathbf{y} - G(\mathbf{x}_b) \right)^{\mathrm{T}} \mathbf{g}$$

$$\mathbf{g} = \mathbf{R}^{-1} \mathbf{G} \mathbf{B} \mathbf{G}^{\mathrm{T}} \mathbf{V}_{\mathrm{m}} \mathbf{T}_{\mathrm{m}}^{-1} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \mathbf{G} \mathbf{B} \,\partial I / \partial \mathbf{x} \Big|_{\mathbf{x}_{b}}$$

$$\Delta I = \left(\mathbf{y} - G(\mathbf{x}_b)\right)^{\mathrm{T}} \mathbf{g} = \sum_{i=1}^{\sum_{a=1}^{b}} \left(y_i - G_i(\mathbf{x}_b)\right) g_i$$
The contribution of each data is a building whethermined

Ν.

Practical Matters: How to do it yourself

First, write a matlab script to compute the functional ${\it l}$ of interest.

Important considerations:

- Abandon fancy matlab programming keep it simple!
- Avoid intrinsic matlab functions, structures and cell arrays (at least until you know what you are doing!)
- Use "for-loops" for transparency

Writing Adjoint Operators

Recall that what we need to run the adjoint model is $\partial I/\partial \mathbf{x}$ So we need is a method for differentiating a matlab script. A useful result is that if **y=Ax**, then dy/dx=A^T A fool-proof recipe for differentiating code (Giering and Kaminski, 1998)

$$\label{eq:code to compute y=Ax} \begin{split} & \textbf{Matlab code to compute y=Ax} \\ & \textbf{x}(1:N) = inputy \\ & \textbf{y}(1:N) = inputy \\ & \textbf{for } i=1:N \\ & \textbf{y}(i) = y(i) + a(i,j)^* \\ & \textbf{x}(j) \\ & \textbf{end} \\ & \textbf{y}(1:N) = \circ output \end{split}$$

 Metab
 code to compute x* x4xy*

 ad_v1:LM=input;
 This represents the derivative of "y:=y:+au;x;" wrt b x;;

 ad_x2:eros(N,1);
 wrt b x;;

 for i=1.M
 for i=1.M

 ad_x1[h=ad_x(j)+a(j)*ad_y(j);
 sep 1: d/dx(y+ai)(y)=ai);

 end
 ad_x(j)*ad_x(j)*a(j,j)*ad_y(j);

 end
 ad_y(1.M=rems(M,1);

 ad_v(1.M=rems(M,1);
 is case a) at ad_y(1.M=rems(M,1);

 ad_v(1.M=rems(M,1);
 is case (a) at ad_y(+a) *ad_y(+a) *ad_y(

adjoint model. This means we need the derivative of our matlab script.

An Illustrative Example: Eddy Kinetic Energy				
Code to compute EKE rec=1; thow1025; umc_read('history.nc','u',rec); umc_read('history.nc','u',rec); uc=nc_read('climatology.nc','u',rec); vc=nc_read('climatology.nc','u',rec);	Code to compute tangent linear EKE rec=1; rho=1025; u=rc_read('history.rc','u',rec); v=rc_read('history.rc','u',rec); uc=rc_read('climatology.rc','u',rec);			
$\begin{array}{l} ekes0;\\ for i=11.22\\ for j=11.22\\ for i=11.22\\ dura(a^{-1}(u_{1,1}^{-1})^{-1}dp)h(j_{1,1}^{-1})^{-1}dx(j_{1,1},k);\\ dura(a^{-1}(u_{1,1}^{-1})^{-1}dy)h(j_{1,1}^{-1})^{-1}dx(j_{1,1},k);\\ dura(a^{-1}(u_{1,1}^{-1})^{-1}dy)h(j_$	$\begin{array}{l} \label{eq:constraint} \underbrace{ u_c k c * 0; } \\ for k k 1 k 2 \\ for j = j 1 j 2 \\ for i = i 1 2 \\ for i = i 1 2 \\ for (i = j k) + u \in [j_k] , k (j_k) \\ du = for (i \in [j_k], k) + u \in [j_k] , k) \\ du = for (i \in [j_k], k) + u \in [j_k] , k) \\ du = for (i \in [j_k], k) + u \in [j_k] , k) \\ du = for (i = j k + 2^n (i_k) , k) + u + 2^n \\ end \end{array}$	You are never going to run this - it is an intermediate step to deriving the adjoint code. d_v(i,j,k)*dv);		
end eke=0.5*rho*eke; eke=>output	end tl_eke=0.5*mo*tl_eke; tl_eke=>output			

Code to compute largent linear ERE exert: then 1025; then 2025; then 2025;	Code to compute the input for the adjoint model (WORK rec-1; bc-1025; BACKWARD unc_read(Histop,nc','u',rec); vunc_read(Histop,nc','u',rec); vuc-nc_read(Climatology,nc','u',rec); uc-nc_read(Climatology,nc','u',rec); ad_uvzenos(is(elu)); ad_uvzenos(is(elu)); ad_eteed5.tho*ad_ete; for ketik2 for ini132 for in
end tj_eke=0.5*rho*tj_eke;	ad_u(i,j,k)=ad_u(i,j,k)+2*fac*du*ad_eke; ad_v(i,j,k)=ad_v(i,j,k)+2*fac*dv*ad_eke;
f ekerboutout	end

Code to compute heat flux normal to an arbitrary vertical section	Code to compute the input for the adjoint model
Ginproms_getgrid('history.nc'); tempenc_read('history.nc')temp'); uwnc_read('history.nc')/u); vwnc_read('history.nc','v); (AB)=roms_genslice(('history.nc','temp',lonTrk,la tTrk); npwsize(lonTrk,l);	SAME PREAMBLE AS LEFT ad_temp=zeros (size(temp)); ad_u=zeros (size(u)); ad_v=zeros (size(v)); ad_r=zeros (size(v)); ad_v=zeros (size(v));
<pre>en=8.ex;</pre>	ad_bhrhor*Cg/ama; for k+k122 for i=k10; ad_Vin()=ad_Vin()=f0; end end ad_u=ac(cn)(en))*d()*f0; hybrid_k1,k1*ad_hf; ad_v=ac(cn)(en))*d()*d(); hybrid_k1,k1*ad_hf; ad_u=ac(cn)(en))*d()*d()*d(); ad_u=ac(cn)(en))*d()*d()*d(); ad_u=ac(cn)(en))*d()*d()*d(); ad_u=ac(cn)(en))*d()*d()*d(); ad_u=ac(cn)(en))*d()*d()*d(); ad_u=ac(cn)(en))*d()*d()*d()*d(); ad_u=ac(cn)(en))*d()*d()*d()*d()*d()*d())*d(); ad_u=ac(cn)(en))*d()*d()*d()*d()*d()*d()*d()*d()*d()*d
hf=hf+T(i)*Vn(i)*ds(i)*dz(i,k); end hf=ho*Cp*hf/area; hf=>output	ad_v=ad_interpolator(Ginp,v,lonTrk,latTrk,ad_vS); ad_temp=ad_interpolator(Ginp, temp,lonTrk,latTrk, nc_write(ads.nc'/uv/ad_u); nc_write(ads.nc'/uv/ad_v); nc_write(ads.nc'/temp//ad_temp);

,k)*ad_hf; k)*ad_ hf; tTrk,ad_Us); tTrk,ad_Vs); onTrk,la tTrk,ad_T);

cpp options and input parameters

#define W4DPSAS_SENSITIVITY #define OBS_IMPACT #define OBS_IMPACT_SPUT #define AD_IMPULSE

DstrSb=0; DendSb=0; KstrSb=1; KendSb=# levels;

ocean.in:

 $Lstate(isFsur) == T \\ Lstate(isUbar) == T \\ Lstate(isVbar) == T \\ Lstate(isVvel) == T \\ Lstate(isVvel) == T \\ Lstate(isTvar) == T T \\ Lstate(isTvar) =$

21

Eigenvectors

We will be concerned with two different sets of eigenvectors:

1. The EOFs of B: $\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{T}$ (More specifically the EOFs of $C = \Phi \Pi \Phi^{T}$ where $\mathbf{B} = \Sigma C \Sigma^{T}$)

These tell us about the space in which the increments live. 2. The eigenvectors of the inverse stabilized representer matrix:

(**GBG**^T +**R**)⁻¹

If this is poorly conditioned, then the increment will be dominated by the eigenvectors of $({\bf GBG^{T}}+R)$ with the smallest eigenvalues.

In some sense, it is the justaposition of these two sets of eigenvectors that determines the efficacy of the observing system.

Array Modes

Recall that the analysis equation is solved using the Lanczos vectors:

 $\mathbf{x}_{a} = \mathbf{x}_{b} + \mathbf{B}\mathbf{G}^{\mathrm{T}}\mathbf{V}_{\mathrm{m}}\mathbf{T}_{\mathrm{m}}^{-1}\mathbf{V}_{\mathrm{m}}^{\mathrm{T}}\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}}\mathbf{R}^{-1}(\mathbf{y} - H(\mathbf{x}_{b}))$

This can be rewritten as: $\mathbf{x}_{a} = \mathbf{x}_{b} + \sum_{i}^{m} \alpha_{i} \Psi_{i}$ where $\Psi_{i} = \mathbf{B} \mathbf{G}^{\mathrm{T}} \mathbf{V}_{\mathbf{m}} \mathbf{u}_{i}$ are the "array modes"

(Bennett, 1985) $\alpha_i = \lambda^{-1} \mathbf{u}_i^{\mathrm{T}} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \mathbf{G} \mathbf{B} \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}_b))$

 $(\lambda_i, \mathbf{u}_i)$ are the eigenpairs of \mathbf{T}_m

Array Modes

- The array modes are a set of generally non-orthogonal basis
- functions that depend only on the obslocations. - The contribution of each $\Psi_{\rm i}$ to the increment $\boldsymbol{x}_{\rm a}\text{-}\boldsymbol{x}_{\rm b}$ (i.e. the
- amplitude α_i) depends on the obs values.
- Each Ψ_i is associated with an eigenpair (λ_i , u_i).
- The number of arrays modes equals the number of inner-loops
- Bennett (1985) refers to the array modes as "interpolation patterns."
- The amplitude α_i depends on $(\lambda_i)^{-1}$, so Ψ_1 represents the most
- "stable" interpolation pattern wrt changes in the obs values.
- + $\mathcal{\Psi}_{\rm m}$ is the least stable, and may represent a significant source
- of unphysical noise.

Array Modes

Recall the definition of an array mode: $\Psi_i = \mathbf{B}\mathbf{G}^{\mathrm{T}}\mathbf{V}_{\mathrm{m}}\mathbf{u}_i$

B can be expressed in terms of its EOFS: $\mathbf{B} = \mathbf{E} \Lambda \mathbf{E}^{\mathrm{T}}$

So the array modes are linear combinations of the EOFs of ${\bf B}$

In which case, if $G^{\rm T}V_{\rm m}u_{\rm i}$ does not project onto a particular EOF of B, then that EOF will not be resolved by the array modes.

Example EOFs of B

Flat spectrum
V. small % variance explained by each

Array Modes

cpp options:

ARRAY_MODES
 FORWARD_READ

- FORWARD_MIXING

Input files:

- FWDname background circulation for ADROMS (ocean.in) :
- Nvct parameter to select required array mode (s4dvar.in)

Output files:

• TLMname - time evolution of the selected array mode (ocean.in)

<u>Bibliography</u>

Bibliocraphy

 Bender, A., and P.C. McIntosh, 1982: O pence earnodelling a ninverse problem tidal theory. *J. Phys. Caeconogr.*, **12**, 1001-1013.

 Tem, C. M., 2001: Interpretations of an adjoint derived observations in grade and server the server and the server of the s