Submesoscale eddies along the Mississippi/Atchafalaya plume front

> Rob Hetland Texas A&M University, USA

Submesoscale?

Submesoscale compared to 'mesoscale' Loop Current and Loop Current Eddies

Similar to 'surface mixed layer instabilities':

- -Similar relevant parameters (Ri ~ 1-10)
- -Similar sub-observational scales, O(10 km)

Horner-Devine et al. (JFM, 2006)

MacCready et al. (CSR, 2009)

Yankovsky and Chapman (JPO, 1997)

WITH TIDE

Rong and Li (ECSS, 2012)

ROMS - TXLA model

~1 km resolution Forced with NARR surface fluxes All major regional river included Nested in GMX HYCOM

X. Zhang et al. (JGR, 2012)

Topography or instability?

Dimarco et al (2010 JMS)

Table 2. Root-Mean-Square (RMS) of the Observed Salinity Relative to Modeled Salinity and Climatological Salinity, Respectively (Equations (2) and (3)) for Each Hypoxia Cruise During Years 2004 to 2008

Hypoxia Cruise	RMS (Obs – Mod)	RMS (Obs – Clim)
2004 MCH01	1.61	3.33
2004 MCH02	1.24	3.38
2004 MCH03	1.52	2.47
2005 MCH04	1.52	3.79
2005 MCH05	1.69	3.42
2005 MCH06	1.29	3.35
2005 MCH07	1.40	3.42
2007 MCH08	1.44	4.38
2007 MCH09	1.56	3.51
2007 MCH10	1.65	1.90
2008 MCH11	1.39	6.13
2008 MCH12	1.36	5.00

50 m

error in the upper

salinity

age

aver

Normalized

Climatology WOA09 1°x1° resolution

skill =
$$\frac{\sum (obs_i - mod_i)^2}{\sum (obs_i - clm_i)^2}$$

X. Zhang et al. (JGR, 2012)

Table 2. Root-Mean-Square (RMS) of the Observed Salinity Relative to Modeled Salinity and Climatological Salinity, Respectively (Equations (2) and (3)) for Each Hypoxia Cruise During Years 2004 to 2008

Hypoxia Cruise	RMS (Obs – Mod)	RMS (Obs – Clim)
2004 MCH01	1.61	3.33
2004 MCH02	1.24	3.38
2004 MCH03	1.52	2.47
2005 MCH04	1.52	3.79
2005 MCH05	1.69	3.42
2005 MCH06	1.29	3.35
2005 MCH07	1.40	3.42
2007 MCH08	1.44	4.38
2007 MCH09	1.56	3.51
2007 MCH10	1.65	1.90
2008 MCH11	1.39	6.13
2008 MCH12	1.36	5.00

X. Zhang et al. (JGR, 2012)

Simulations suggest:

- eddy field is chaotic,
- strongest in summer, and
- may be triggered by a variety of processes.

Marta-Almeida et al. (JGR, 2012)

Z. Zhang and Hetland (JGR, submitted)

Base state

Bouyancy:

Mean state:

$$fU = -\frac{p_y}{\rho_0}$$

$$-b = -\frac{p_z}{\rho_0}$$

so that,

$$U_z = -\frac{b_y}{f} = \frac{M^2}{f}$$

where:

$$N^2 = -b_z$$
$$M^2 = -b_y$$

Relevant parameters:

$$Ri = \frac{N^2 f^2}{M^4}$$
 $S = \frac{N}{f} \alpha$

Bouyancy:

$$b = g\left(\frac{\rho_0 - \rho}{\rho_0}\right)$$

$$b_2 \otimes U(z)$$

$$y \neq X$$

Eddies only form for $S \leq 0.3$, or 3Rd < W.

Where the aspect ratio, α , is used to define $1 > \frac{N}{f} \frac{H}{W} = \frac{N}{f} \alpha$ and using $Ri = \frac{N^2 f^2}{M^4}$ $1 > S \equiv \frac{R_d}{W} = \frac{N}{f} \alpha = \frac{M^2}{f^2} \alpha \sqrt{Ri}$

Conclusions:

Eddies need to fit – S < 0.3. This may be why baroclinic instabilities are rare in river plumes.

When eddies form, the field evolves to S ~ 0.3. This suggests that eddies cannot export fresh water from the shelf alone.