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J = δzT D−1δz + (d−Gδz)T R−1(d−Gδz)

 Tangent linear observation operator +
 Tangent linear model
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Model Set-up: ROMS CCS 
(California Current System)

‣ Pronounced seasonal cycle of upwelling in Central California 
coast / Energetic mesoscale circulations

‣ Bathymetry/Domain : Along the California Coast

‣ Regional Ocean Modeling System

• 1/10° horizontal resolution 

• 42 s-levels following bathymetry : 0.3-8m over continental shelf ; 7-300m deep ocean

• Surface forcing and open boundaries compute daily and interpolated 

‣ Forcing
• atmospheric boundary layer fields, freshwater fluxes: ERA 40 / 2.5° (1980- 2001), ERA interim 

Projects / 0.7° (2002-2010)

• winds, 6h averaged from: ERA 40 / 2.5° (1980- 2001), Cross Calibrated MultiPlatform 
(CCMP)/ 25km (1987-2010), ERA interim Projects / 0.7° (2002-2010)

‣ Error covariance matrix D uses diffusion operator approach

• Based on [Weaver et al. (2005)]

- prior initial state composed on unbalanced components assumed to be uncorrelated:

-  standard deviations computed from a long run without assimilation

• Decorrelation lengths:        

-     : 50km horizontal,  30m vertical

-     : 300km (wind stress), 100km (heat/freshwater)

-     : 100km horizontal, 30m vertical

• Correlation lengths:  semi-variogram method, [Bannerjee et.al, (04)] [Millif et al.(03)]

‣ Incremental method, tangent linear hypothesis

• Control vector 

• Assumed small non-linearities

• Cycles of 15 inner-loops: minimization of J , 1 outer-loop to update the innovation

‣ For each cycle: B-preconditioned restricted Lanczos method 
• Minimization of J using an adjoint model, searching for δz in the observation space

• Optimization method : Lanczos version of the Restricted Preconditioned Conjugate 
Gradient (RPCG) of [Gratton, Tshimanga, 2009], same rate of convergence as primal 
method. 

‣ Background quality control
• Reject observation subject to gross errors or inconsistent with the model using the 

following criteria

‣ Departures from Observation
• Assimilated Sea Surface Temperature Observations    

 

• California Cooperative Oceanic Fisheries Investigations- Calcofi Cruises (1990-2007) 

                              ROMS Forward                                    ROMS Analysis (after assimilation)    



Variability
‣ To understand seasonal to inter-annual and inter-decadal variability

‣ Time-frequency analysis based on wavelet decomposition
• Compute wavelet coefficients Wav(time,period) for time series of variables (spatially averaged for 

each cycle)
• Plot           , the power wavelet; compare to the red-noise                                      , with α chosen 

so that the Fourier transform of the red noise fits                                          ;  [Torrence, Compo (98)]

• Non-periodic signal padded with zeros to limit the boundaries reflection effect.

• ocean surfaces fluxes : derived using bulk formulation of [Liu et al. (79)], [Fairfall et al. 
(96)]

‣ Open boundary conditions         : North-South-West
• tracer/velocity fields:  Simple Ocean Data Assimilation Product (SODA), Levitus 

seasonal climatology 

• free surface:  Chapman boundary condition, vertically integrated flow:  Flather 
boundary condition

• Sponge layer for viscosity of 100 km, from 4 m2.s-1 to 400 m2.s-1

Observations
‣ All data from in-situ and satellites available were used

• all observation of the same state were combined as super-observation over 6h- time 
window to reduce redundancy

• diagonal error covariance matrix: sum of measurement and representativeness errors

‣ Summary of the different Observations Platforms

• Threshold values α estimated from frequential distribution  f  of innovation vectors d     
from a randomly chosen year 1999 analysis after assimilation. [Andersson, Järvinen (99)]

➡ 4 standard deviations seem to reflect a fair departure from the straight lines : α  = 16

• Use of the same threshold for all in situ data only.

Monitoring
‣ Cost function                                            Background Quality Control

• Non-orthogonal Morlet wavelet : focus on the smooth/continuous variations of the timeseries

‣ Wavelet analysis 
• Region Center-East 

• SST anomaly: Sea Surface Temperature minus climatological mean

• Thermocline depth anomaly - Depth of the thermocline minus climatological  
mean: Thermocline assumed to be the isotherm of 11°C. 
Based on vertical profiles of temperatures for the year 1995.

• Along-shore anomaly: Along-shore transport along 37°N section 
minus climatological mean.

• Cross-shore transport: Cross-shore transport along 500m isobathymetry section.

• Thermocline depth and SST : Significance of the 3 year-period peaks in 82-83 and 97-98: 
Correlations with El Niño ?

*The GOES SST are seriously biased during the period 2001-2002, so they are not used in ROMS 
4D-VAR until 2003.

4D-Var Set-up
‣ Cost function

• Control vector                                      ,    no errors model 

• Minimize non linear function: 

‣ Time assimilation windows: 
• 31 years, from January 1980 to December 2010

• Overlapped cycles of 8 days: one cycle every 4 days

• Prior state        :  state at the middle of the previous cycle, except the first cycle: long spin-
up integration of the ROMS CCS

‣ Time Series
• Divided in 4 regions - 

Spatially averaged only on
 Center-East region

Prior            
(almost under the green curve)

ROMS Forward  

ROMS Analysis 
(after assimilation)  

Community free access
‣ Website/ OpenDAP
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