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Introduction
Importance of ocean general circulation models (OGCMs)

OGCMs are the primary tools used for predicting ocean
currents and the structure of the ocean’s stratification;

Significant development over the past two decades →
facilitated by military’s operational needs, industry (oil/gas)
and basic research community;
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Introduction
Importance of ocean general circulation models (OGCMs)

Good representation of the observed energetics of mesoscale
field using data-assimilation or high horizontal resolution
(1/25o) (Thoppil et al., 2011 JGR) .
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Introduction
Modeling scales smaller and faster than mesoscale (< ∼ 10 km and ∼ 2 days)

OGCMs may encounter significant obstacles due to primarily three
reasons:

1 Data availability and technical challenges within the context
of present assimilation methods;

2 Accuracy of subgrid-scale (SGS) parameterizations when
smaller features are not fully resolved;

3 Validity of primitive equations as dx → 0, since hydrostatic
approximation affects both dissipative and dispersive
properties.
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Objectives

Evaluate the mixing and stirring carried out by an OGCM (ROMS)
under different modeling choices and similarly configured to a
direct numerical simulation (DNS) or large eddy simulation (LES)
model (ground truth).

Lock Exchange Problem for

Stratified Mixing

Upper Ocean Frontal Instability

for Lateral Stirring
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The numerical models
DNS/LES model - Nek5000 (spectral element model)

Non-dimensionalized Boussinesq equations:



Du

Dt
=

1

a Ro
ẑ× u−∇p − Fr−2 ρ′ ẑ + Re−1∇2u−∇ · τ ,

∇ · u = 0 ,

Dρ′

Dt = Pe−1∇2ρ′ ,

DC
Dt = Pe−1∇2C ,

(1)
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Du

Dt
=

1

a Ro
ẑ× u−∇p − Fr−2 ρ′ ẑ + Re−1∇2u−∇ · τ ,

∇ · u = 0 ,

Dρ′

Dt = Pe−1∇2ρ′ ,

DC
Dt = Pe−1∇2C ,

(1)

Re = U0 H0/ν, Ro = U0/(f L), a = L/H0,
Fr = U0/(N H0), Pe = RePr = U0 H0/κ and Pr = ν/κ.
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The subgrid scale tensor τ = uu− ūū is computed using a
dynamic Smagorinsky model, while no explicit subgrid models
are used for the density perturbation and tracer concentration
fields, relying instead on de-aliasing and high-order filtering
operations.
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DNS/LES model - Nek5000 (spectral element model)

Non-dimensionalized Boussinesq equations:



Du

Dt
=

1

a Ro
ẑ× u−∇p − Fr−2 ρ′ ẑ + Re−1∇2u−∇ · τ ,

∇ · u = 0 ,

Dρ′

Dt = Pe−1∇2ρ′ ,

DC
Dt = Pe−1∇2C ,

(1)

Further details can be found on Özgökmen et al., 2009a/b OM.
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The numerical models
Regional Ocean Modeling System version 3.5(566)

Primitive equations:



∂u

∂t
+ u · ∇u − fv = − 1

ρ0

∂φ

∂x
+ Fu + KMH∇2u +

∂

∂z
(KMV

∂u

∂z
+ ν

∂u

∂z
) ,

∂v
∂t

+ u · ∇v + fu = − 1
ρ0

∂φ
∂y

+ Fv + KMH∇2v + ∂
∂z

(KMV
∂v
∂z

+ ν ∂v
∂z

) ,

∂φ
∂z

= − ρ
′g
ρ0
,

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 ,

∂T
∂t

+ u · ∇T = FT + KCH∇2T + ∂
∂z

(KCV
∂T
∂z

+ νθ
∂T
∂z

) ,

ρ = ρ0(1− Tcoef × (T − T0))

(2)
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) ,

ρ = ρ0(1− Tcoef × (T − T0))

(2)

Horizontal momentum: third-order, upstream-biased advection
scheme with velocity dependent hyper-viscosity (Shchepetkin and
McWilliams, 1998 MWR).
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Vertical momentum: fourth-order centered differences scheme.
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The numerical models
Regional Ocean Modeling System version 3.5(566)

Primitive equations:
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Tracers: advected using a recursive Multidimensional Positive
Definite Advection Transport Algorithm (MPDATA) scheme.
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Regional Ocean Modeling System version 3.5(566)
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Horizontal mixing of momentum and tracers are computed using
a Laplacian formulation.
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Lock Exchange Problem for Stratified Mixing
Model configurations and parameters

Nek5000, DNS (Özgökmen et al., 2009 OM)

a = L/H0 = 2 and W /H0 = 1;

Fr =
0.5
√

g∆ρ′H/ρ0√
g∆ρ′0.5H/ρ0

= 2−1/2;

Ro = 0, Pr = 7;

Re = 103 and 104.
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Lock Exchange Problem for Stratified Mixing
Model configurations and parameters

ROMS

L = 200 m and W = H0 = 100 m
→ a = L/H0 = 2;

Fr = 2−1/2, Ro = 0;

PrH = 7, ReH = 103 and 104;

ReV and PrV → closure.
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Lock Exchange Problem for Stratified Mixing
Model configurations and parameters

DNS/ROMS

Boundary Conditions:

EW → periodic;

NS → no-flow and free-slip;

No bottom friction.
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Lock Exchange Problem for Stratified Mixing
Model configurations and parameters

DNS/ROMS

Boundary Conditions:

EW → periodic;

NS → no-flow and free-slip;

No bottom friction.

Initial Conditions:

u = 0;

ρ′(x , y , z , 0)

∆ρ′
=

{
1 for 0 ≥ x < (L/2 + η),
0 for (L/2 + η) ≥ x ≤ L.
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Lock Exchange Problem for Stratified Mixing
Model configurations and parameters

DNS/ROMS

Time scale for the system:

Tp = L/(0.5
√
g∆ρ′H/ρ0).

Total integration period:

t∗ = 4× T/Tp ∼ 60.
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Lock Exchange Problem for Stratified Mixing
List of experiments and quantification of mixing

1 grid resolution;

2 tracer advection scheme;

3 explicit ReH ;

4 choice of turbulence closures;

5 control experiments.
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8 / 21 Gustavo M. Marques & Tamay M. Özgökmen On modeling the turbulent exchange in buoyancy-driven fronts



Lock Exchange Problem for Stratified Mixing
List of experiments and quantification of mixing

1 grid resolution;

2 tracer advection scheme;

3 explicit ReH ;

4 choice of turbulence closures;

5 control experiments.
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Lock Exchange Problem for Stratified Mixing
Results: description of the flow

Contours of normalized density perturbation ρ′/∆ρ′

ROMS

res=1.25 m, ReH=104 and k − ε/CA

DNS

Re=104
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Results: description of the flow
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Lock Exchange Problem for Stratified Mixing
Results: comparison of mixing from DNS and ROMS

Compute background (or reference) potential energy (BPE),
which quantifies mixing in a enclosed system (Winters et al.,
1995 JFM) following Tseng and Ferziger, (2001, PF) by using
probability density function:

BPE = gLW

∫ H

0
ρ′(zr )zrdzr , (3)

where zr (ρ′) is the height of fluid of density ρ′ in the minimum
potential energy state.

Non-dimensional background potential energy:

BPE ∗(t∗) =
BPE (t∗)− BPE (0)

BPE (0)
(4)
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Lock Exchange Problem for Stratified Mixing
Results: comparison of mixing from DNS and ROMS

10 m res., different turbulence closures and ReH = 103
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Lock Exchange Problem for Stratified Mixing
Results: comparison of mixing from DNS and ROMS

5, 2.5 and 1.25 m res., different turbulence closures and ReH = 103
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Lock Exchange Problem for Stratified Mixing
Results: comparison of mixing from DNS and ROMS

1.25 m res., different turbulence closures and ReH = 104
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Lock Exchange Problem for Stratified Mixing
Results: comparison of mixing from DNS and ROMS

Normalized root-mean-square error: ε =

√
1
n

∑n
i=0(BPEDNS−BPEROMS )2

max(BPEDNS )
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Upper Ocean Frontal Instability for Lateral Stirring
Model configurations and parameters

Nek5000, LES (Özgökmen et al., 2011 OM)

a = L/H0 = W /H0 = 20;

Fr = 0.1;

Pr = 7;

Re = 105;

Ro=0.02.
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Upper Ocean Frontal Instability for Lateral Stirring
Model configurations and parameters

ROMS

L = W = 10 km and H0 = 500 m
→ a = 20;

N ≈ 4.42× 10−4s−1;

U0 ≈ 0.02 m/s;

Fr = U0/(NH0) ≈ 0.1;

f = 1.21× 10−4 s−1;

Ro = U0/(fL) ≈ 0.02
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Upper Ocean Frontal Instability for Lateral Stirring
Model configurations and parameters

LES/ROMS

Fastest growing modes R;

ML radius of deformation
Rd =

√
g
ρ0

∆ρ′mho/f ;

Assume R/Rd ≈ 5 (Eldevik and

Dysthe, 2002 JPO);

Rd ≈ 400 m and R ≈ 2 km.
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Upper Ocean Frontal Instability for Lateral Stirring
Model configurations and parameters

LES/ROMS

Boundary Conditions:

EW → periodic;

NS → no-flow and free-slip;

No bottom friction.
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Upper Ocean Frontal Instability for Lateral Stirring
Experiments description

1 horizontal resolution;

2 choice of turbulence closure;

3 control exp.;

4 vertical resolution.
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Upper Ocean Frontal Instability for Lateral Stirring
Experiments description

1 horizontal resolution;

2 choice of turbulence closure;

3 control exp.;

4 vertical resolution.

Vtrans=1, Vstretch=1, θs=16, θb=0 and TCLINE = 100 m.
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Upper Ocean Frontal Instability for Lateral Stirring
Results: description of the flow

ρ′ (kg/m3) for experiment mli-01 (dx=100 m, kε/CA, Nσ=32)

Oscillations around the
geostrophically adjusted
state (Tandon and Garrett,

1994 JPO);

No significant changes in
stratification during this
period (Boccaletti et al.,

2007 JPO);

MLIs are visible and
restratification begins
after a few days;

Coherent vortices with
R ≈ 2 km.
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Upper Ocean Frontal Instability for Lateral Stirring
Results: description of the flow, LES versus ROMS

ρ′ (kg/m3) at time = 15 days

LES 3D ρ′ field is visually very similar to the ROMS simulations.
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Upper Ocean Frontal Instability for Lateral Stirring
Results: passive tracer release after 15 days

Passive tracer (kg/m3) field for exp. mli-01 (dx=100 m, kε/CA, Nσ=32)
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Upper Ocean Frontal Instability for Lateral Stirring
Results: comparison between LES and ROMS

Second moment (or tracer variance) of the tracer field (C ) across
the front and at a fixed level of z0 = 5 m:

σ2
y (t, z0) =

M02(t, z0)−M2
01(t, z0)

M00(t, z0)
(3)

where

Mmp(t, z0) =
1

A

∫ ∫
xmypC (x , y , z0, t)dxdy . (4)

This is frequently employed in the analysis of observational data
(Sundermeyer and Ledwell, 2001 JPO).
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Upper Ocean Frontal Instability for Lateral Stirring
Why is KPP not performing well?

Tracer variance starting at time = 0 days
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Upper Ocean Frontal Instability for Lateral Stirring
Why is KPP not performing well?

Eddy stream function ψe (Mahadevan et al, 2010 JGR)

ψe = ε

(
ε v ′b′ bz − ε−1 w ′b′ by

by
2

+ ε2bz
2

)
(3)
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Upper Ocean Frontal Instability for Lateral Stirring
Why is KPP not performing well?

Maximum ψe (m2/s) in the mixed layer versus time (days)
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Upper Ocean Frontal Instability for Lateral Stirring
Why is KPP not performing well?

Max. vertical diffusivity AKt (m2/s) in the mixed layer versus time
(days)
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Upper Ocean Frontal Instability for Lateral Stirring
Results: comparison between LES and ROMS

Going back to σ2
y computations from tracer release at day 15.

The y -component of (effective) diffusivity can be obtained
following:

Ky =
1

2

∂σ2
y

∂t
. (3)

Use 6 hrs interval and then compute normalized root-mean-square
error:

ε =

√
1
n

∑n
i=0(Ky−LES − Ky−ROMS)2

max(Ky−LES)−min(Ky−LES)
(4)
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Exp. < Ky > (m2/s)

LES 2.0

mli-01 3.4

mli-02 3.3

mli-03 3.0

mli-04 3.3

mli-05 3.5

mli-06 5.8

mli-c1 4.5

Values are within the limits observed over the c. shelf on spatial scales of

1-10 km and timescales of less then 5 days (Sundermeyer and Ledwell, 2001

JPO).
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Summary
Lock Exchange Problem for Stratified Mixing

No convergence is attained towards the DNS as ∆x → 0 and
the best results are achieved with an intermediate resolution
of 2.5 m;

U3H/C4V tracer scheme overestimates mixing (and gives a
non-monotonic behavior). The results are improved by ∼10 %
when using MPDATA.
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Summary
Upper Ocean Frontal Instability for Lateral Stirring

k − ε/CA gives good agreement with LES; poor performance
of KPP due to extremely low vertical viscosity/diffusivity →
faster restratification;

To our knowledge, the importance of the turbulence closure
on mixed layer restratification has been identified for the first
time.
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Thank you!
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