
1

MPI in ROMS

Kate Hedstrom
Dan Schaffer, NOAA

Tom Henderson, NOAA
January 2010

2

Outline

• ROMS introduction
• ROMS grids
• Domain decomposition
• Picky details
• Debugging story

3

ROMS
• Regional Ocean Modeling System
• Ocean model designed for limited

areas, I also have ice in it
• Grid is structured, orthogonal,

possibly curvilinear
• Islands and peninsulas can be

masked out, but are computed
• Horizontal operations are explicit
• Vertical operations have an

implicit tridiagonal solve

4

Sample
Grid

5

Some History
• Started as serial, vector f77 code
• Sasha Shchepetkin was given the job of

making it parallel - he chose SGI
precursor to OpenMP (late 1990’s)

• Set up tile structure, minimize number
of thread creation/destruction events

• NOAA people converted it to SMS
parallel library (2001)

• Finally went to a native MPI parallel
version (2002) - and f90!

• Sasha independently added MPI

6

Computational
Grids

• Logically
rectangular

• Best parallelism
is domain
decomposition

• Well understood,
should be easy
to parallelize

7

Arakawa
Numerical

Grids

8

The
Whole
Grid

• Arakawa C-
grid, but all
variables
are dimen-
sioned the
same

• Computa-
tional
domain is
Lm by Mm

9

Parallelization Goals
• Ease of use

– Minimize code changes
– Don’t hard-code number of processes
– Same structure as OpenMP code

• High performance
– Don’t break serial optimizations

• Correctness
– Same result as serial code for any number of

processes

• Portability
– Able to run on anything (Unix)

10

Domain Decomposition

• Overlap areas are known as ghost points

11

Some Numbering Schemes

12

Mm Not Divisible by 4

• These
numbers are
 in structure
BOUNDS in
mod_param.F

• ROMS should
run with any
Mm, may be
unbalanced

13

ROMS Tiling Details

• Do loop bounds given in terms of
Istr, Iend, etc., from BOUNDS

14

Simple 1D Decomposition:
Static Memory

15

Simple 1D Decomposition:
Dynamic Memory

16

We Chose Dynamic

• More convenient for location of
river sources, land mask, etc

• Simpler debugging, even if just
with print statements

• If we manage it right, there
shouldn’t be extra overhead

• Sasha chose static, not trusting
new f90 features to be *fast*

17

Adjacent Dependencies

18

Add “Halo” Regions for
Adjacent Dependencies

19

Halo Region Update: Non-
Periodic Exchange

20

Some Details

• Number of ghost/halo points
needed depends on numerical
algorithm used
– 2 for most
– 3 for MPDATA advection scheme,

biharmonic viscosity

21

More Details

• Number of tiles NtileI and NtileJ
read from a file during initialization

• Product NtileI*NtileJ must match
number of MPI processes

• Size of tiles is computed:
ChunkSizeI=(Lm+NtileI1)/NtileI
MarginI=(NtileI*ChunkSizeILm)/2

• Each tile has a number, matching
the MPI process number

22

Still More
• We use the C preprocessor extensively
• DISTRIBUTE is cpp tag for the MPI code
• There are #defines for EASTERN_EDGE,

etc:
#define EASTERN_EDGE Iend.eq.Lm

 if (EASTERN_EDGE) then

 :

#define PRIVATE_1D_SCRATCH_ARRAY
IminS:ImaxS

• IminS is Istr-3, ImaxS is Iend+3

23

2D Exchange - Before

24

2D Exchange - Sends

25

2D Exchange - Receives

26

2D Exchange - After

27

Notes

• SMS does the 2-D exchanges all in
one go

• ROMS does it as a two step
process, first east-west, then north-
south

• Sasha’s code can do either
• Routines for 2-D, 3-D and 4-D fields,

mp_exchange2d, etc., exchange up
to four variables at a time

28

mp_exchange

call mp_exchange2d(ng, tile, &

 iNLM, 2, Lbi, Ubi, LBj, Ubj, &

 Nghost, EWperiodic, NSperiodic,&

 A, B)

• It calls
– mpi_irecv
– mpi_send

– mpi_wait

29

Main Program

!$OMP PARALLEL DO PRIVATE…

 DO thread=0,numthreads1

 subs=NtileX*NtileE/numthreads

 DO tile=subs*thread,subs*(thread+1)1

 call set_data(ng, TILE)

 END DO

 END DO

!$OMP END PARALLEL DO

30

Sneaky Bit

• globaldefs.h has
#ifdef DISTRIBUTE

 #define TILE MyRank

 #else

 #define TILE tile

 #endif

• MyRank is the MPI process number
• Loop executed once for MPI

31

set_data

Subroutine set_data(ng, tile)
 use mod_param
 implicit none
 integer, intent(in) :: ng, tile
#include tile.h
 call set_data_tile(ng, tile, &
 LBi, UBi, LBj, Ubj, &
 IminS, ImaxS, JminS, JmaxS)
 return
End subroutine set_data

Array indices

• There are two sets of array
bounds here, the LBi family and
the IminS family.
– LBi family for bounds of shared global

storage (OpenMP) or for MPI task view of
the tile – including the halo.

– IminS family for bounds of local scratch
space, always three grids bigger than tile
interior on all sides.

32

33

set_data_tile

• This is where the real work
happens

• It only does the work for its own
tile

• Can have the _tile routine use
modules for the variables it needs
or pass them in as parameters
from the non-tile routine

34

A Word on I/O

• The master process (0) does all the
I/O, all in NetCDF

• On input, it sends the tiled fields to
the respective processes

• It collects the tiled fields for output
• We now have an option to use

NetCDF 4 (and MPI-I/O), but it has so
far been sloooooowwww

Error checking
• ROMS now does error checking on

all I/O related calls
– If it’s the master process, broadcast status

code
– All processes check status and exit if

trouble, passing status back up the line

• In the bad old days, you could get
processes waiting on the master
when the master had trouble

35

36

More Changes

• MPI communication costs time:
latency + size*bandwidth

• We were passing too many small
messages (still are, really)

• Combining buffers to pass up to
four variables at a time can add
up to noticeable savings (10-20%)

37

New Version

• Separate mp_exchangeXd for
each of 2d, 3d, and 4d arrays

• New tile_neighbors for figuring out
neighboring tile numbers (E,W,N,S)
and whether or not to send

• Each mp_exchange calls
tile_neighbors, then sends up to
four variables in the same buffer

38

Parallel Bugs

• It’s always a good idea to
compare the serial and parallel
runs

• I can plot the difference field
between the two outputs

• I can create a differences file with
ncdiff (part of NCO)

39

Differences after a Day

40

Differences
after one
step - in a
part of the

domain
without ice

41

What’s up?

• A variable was not being
initialized properly - “if” statement
without an “else”

• Both serial and parallel values are
random junk

• Fixing this did not fix the one-day
plot

42

Differences
after a few

steps -
guess

where the
tile

boundaries
are

43

What was That?
• The ocean code does a check for

water colder than the local
freezing point

• It then forms ice and tells the ice
model about the new ice

• It adjusts the local temperature
and salinity to account for the ice
growth (warmer and saltier)

• It failed to then update the salinity
and temperature ghost points

44

More…
• Plotting the differences in surface

temperature after one step failed to
show this

• The change was very small and the
single precision plotting code couldn’t
catch it

• Differences did show up in timestep two
of the ice variables

• Running ncdiff on the first step, then
asking for the min/max values in
temperature showed a problem

45

Debugging
• I didn’t know how to use totalview in

parallel then
• Enclosing print statements inside if

statements prevents each process from
printing, possibly trying to print out-of-
range values

• Find i,j value of the worst point from the
diff file, print just that point - many
fields

46

Conclusions

• Think before coding - I can’t
imagine the pain of having picked
the static numbering instead

• It is relatively easy for me to
modify the code without fear of
breaking the parallelism

• Still, always check for parallel
bugs

