Modeling M₂ Internal Tide in Combination with Wind-Driven Circulation on the Oregon Shelf

John J. Osborne, A. L. Kurapov, G. D. Egbert, P. M. Kosro COAS, Oregon State University

Supported by NSF Award #0648314 and Teragrid grant TG-OCE90012

• Δt = 1 hour •Red Arrows: 0.5 m s⁻¹ •Note periodic (i.e., tidal) variability!

Internal tide:

•Near surface: contributes to variability

•Near bottom: potential dominates variability

Model Surface Currents Model Bottom Currents

Objectives

- Understand influences of wind-driven and tidallydriven currents on the Oregon shelf
- Identify and describe the generation, propagation, dissipation and intermittency of M₂ internal tide as affected by upwelling-induced changes in background hydrodynamic conditions
- Due to intermittency:
 - Internal tide is hard to sample
 - Modeling is the most promising approach

Model Setup

Case Winds + M₂: Monthly-Ave. SST is Qualitatively Correct

Subtidal Model Shelf Currents Agree With Obs.

- •Meridional Currents
- •40 hr. Low-pass filtered
- Depth-averaged

Statistic	NH10	Coos Bay	Rogue R.
Complex Correlation	0.72	0.47	0.59
Complex Phase Angle	0.83 ⁰	-3.28 ⁰	10.53 ⁰
RMS [m s ⁻¹]	0.09	0.11	0.14

Barotropic Tide is Qualitatively Correct

TPXO 7.0

Harmonically-Analyzed ROMS Output

SSH Amplitude [m]

^{0.9} White lines are phase contours, 5[°] apart.
^{0.8}

Barotropic tide propagates northward along the Oregon coast as a Kelvin wave.

ROMS solution shows smaller scale variability in barotropic tide.

Scale Ellipse: 5 cm s⁻¹

0.6

0.5

Surface Baroclinic M_2 Tidal Ellipses Show Stronger Tide Near NH10

Tidally-Averaged, Depth-Integrated M₂ Baroclinic Tidal Energy Balance

Topographic Energy Conversion ≈ Energy Flux Divergence + Dissipation (e.g., Kurapov *et al.*, 2003)

To compute TEC and EF, model output is harmonically analyzed in a series of 2-day time windows. This resolves intermittency of the internal tide on short time scales and enables calculations of seasonal means and standard deviations.

For energy balance analysis, we focus on the central Oregon shelf

August Mean SST, 1 km nested in 3 km

Baroclinic Tidal Energy Flux Varies in Space and Time

Time-Averaged Energy Balance Over the Slope, Days 93 to 241

Zoom on Central Shelf

Large Mean Values Typically Associated With Large Standard Deviation

0.04

0.02

0

-0.02

-0.04

[W m⁻²]

Zoom on Central Shelf

Large Mean Values Typically Associated With Large Standard Deviation

Time-Averaged Energy Balance Over the Slope, Days 93 to 241

Low TEC Level Zones Significantly Contribute to the Area-Integrated TEC

Cross-Shelf Transport: Winds-Only, Winds + M2 and Winds + 8 Constituents

Sea Surface Temperature, 2002 year day 090.0000

Is this sensitivity to open boundary conditions (recall, the model based on hydrostatic equations is poorly-conditioned)?

Or, is it indeed the effect of the internal tide on horizontal turbulent heat flux?

Summary

- The nested 1-km ROMS application correctly reproduces both sub-tidal and tidal variability.
- Over the slope, internal tide generation hotspots are partially balanced by energy flux divergence with nearby dissipation.
- Over the shelf, there is a net onshore flux of baroclinic internal tide energy and low local production of internal tides.
- Zones of energy propagation and dissipation are mapped and are targets of for future analysis.
- Cross-shore transport is sensitive to model formulation. Do tides affect the shelf-open ocean exchange?