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East Australia Current ROMS Model for IS4DVAR
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ROMS* Model Configuration

Global NOGAPS, dailyForcing

Global NCOM (2001 and 2002)Open boundaries

10, 3N outer, N inner loops

~ 25 km∆x, ∆y

0.25 x 0.25 degreesResolution

64 x 80 x 30Grid

1080 sec∆t

100 km, 150 mDe-correlation scale

16 to 4895 mBathymetry

1/8o resolution version simulates complex EOF “eddy” and
“wave” modes of satellite SST and SSH in EAC
separation:

* http://myroms.org

Wilkin, J., and W. Zhang, 2006, Modes of mesoscale sea surface
height and temperature variability in the East Australian Current
J. Geophys. Res. 112, C01013, doi:10.1029/2006JC003590



IS4DVAR*

• Given a first guess (the forward trajectory)…
•• and given the available dataand given the available data……
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*Incremental Strong Constraint 4-Dimensional Variational
data assimilation



IS4DVAR

• Given a first guess (the forward trajectory)…
• and given the available data…
•• what change (or increment) to the initial conditions (what change (or increment) to the initial conditions (ICIC))

produces a new forward trajectory that better fits theproduces a new forward trajectory that better fits the
observations?observations?
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The best fit becomes the analysis

assimilation window

ttii  =  analysis=  analysis
initial timeinitial time

ttff =  analysis =  analysis
final timefinal time

The strong constraint requires the trajectory satisfies the physics in ROMS.
The Adjoint enforces the consistency among state variables.



The final analysis state becomes the initial
conditions for the forecast window

assimilation window forecast

ttff  =  analysis=  analysis
final timefinal time

ttff +  + ττ =  forecast =  forecast
horizonhorizon



Forecast verification is with respect to dataForecast verification is with respect to data
not yet assimilatednot yet assimilated

assimilation window forecast

verification

ttff  + + ττ =  forecast =  forecast
horizonhorizon



Days since 1 January 2001, 00:00

XBTs

4DVar Observations and Experiments

7-Day IS4DVAR Experiments

E1: SSH, SST
E2: SSH, SST, XBT

SSH  7-Day Averaged AVISO
SST  Daily CSIRO HRPT



SSH/SST

SSH/SSTSSH/SST

SSH/SST

Observations ROMS IS4DVAR: SSH/SST

ROMS IS4DVAR: XBT OnlyFirst Guess

Assimilating surface vs. sub-surface observations
EAC IS4DVAR



Observations

E1

E2

E2 – E1

SSH

SSH

Temperature along XBT line

Temperature along XBT line

7-Day 4DVar Assimilation cycle

E1: SSH, SST Observations
E2: SSH, SST, XBT Observations

EAC IS4DVAR



Days since 1 January  2001  00:00
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Forecast SSH correlation and RMS error:   Experiment E2

SSH Lag Pattern RMS

SSH Lag Pattern Correlation
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E1: SSH + SST

Comparison between ROMS temperature analysis (fit) and withheld
observations (all available XBTs); the XBT data were not assimilated –
they are used here only to evaluate the quality of the reanalysis.

Assimilation of SST

Poor subsurface projection
of SSH information

The subsurface
projection of
surface only
satellite data is
less skillful than
we would like.

These errors
also adversely
affect the
forecast.



Three ways:Three ways:
1)1) The Adjoint ModelThe Adjoint Model
2)2) Empirical statistical correlations toEmpirical statistical correlations to

generate synthetic datagenerate synthetic data
 Here, T(z) from SSH and SSTHere, T(z) from SSH and SST

3)3) Modeling of the backgroundModeling of the background
covariance matrixcovariance matrix

 e.g. via the hydrostatic/geostrophic relatione.g. via the hydrostatic/geostrophic relation

Transferring information from one state variable to
another, and projecting surface to subsurface



(1) Adjoint





Adjoint model
integration is forced by

the model-data error

xb = model state
(background) at end of
previous cycle, and 1st

guess for the next
forecast

In 4DVAR assimilation
the adjoint gives the
sensitivity of the initial
conditions to mis-
match between model
and data

A descent algorithm
uses this sensitivity to
iteratively update the
initial conditions, xa,
(analysis) to minimize
Jb+ Jo

Observations minus previous forecast

δx

0               1               2               3               4     time

previous
forecast

xb



Basic IS4DVAR procedure:

(1) Choose an

(2) Integrate NLROMS                   and save

           (a) Choose a

           (b) Integrate TLROMS                  and compute J

           (c) Integrate ADROMS                 to yield

           (d) Compute

           (e) Use a descent algorithm to determine a “down gradient”
      correction  to             that will yield  a smaller value of  J

           (f)  Back to (b) until converged

(3)      Compute new                                       and back to (2) until converged
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NLROMS = Non-linear forward model; TLROMS = Tangent linear; ADROMS = Adjoint

( ) ( )

( ) ( )

1

1

1

1
( )

2

1

2

b

o

T

b b

J

N
T

i i i i i i

i

J

J x
!

!

=

= ! ! +

! !"

x x B x x

H x y O H x y

!""""#""""$

!""""""#""""""$

= model-
data misfit







E1: SSH + SST

Comparison between ROMS temperature analysis (fit) and withheld
observations (all available XBTs); the XBT data were not assimilated –
they are used here only to evaluate the quality of the reanalysis.

Assimilation of SST

Poor subsurface projection
of SSH information

The subsurface
projection of
surface only
satellite data is
less skillful than
we would like.

These errors
also adversely
affect the
forecast.



A statistical subsurface projection using regression of SSH and SST
on EOFs of historical [dynhgt, T(z), S(z)] observed profiles

Example:

VOS XBT
transect

Syn-XBT
analysis 

(2) Synthetic XBT/CTD



RMS error normalized by the expected variance in SSH

lag = -1 week lag = 0 week lag = 1 week lag = 2 weeks lag = 3 weeks lag = 4 weeks

Forecast RMS error:

   - typically < 0.5 out to 2 weeks forecast
   - grows fastest at the open boundaries



E1: SSH + SST

Comparison between ROMS temperature analysis (fit) and withheld
observations (all available XBTs); the XBT data were not assimilated –
they are used here only to evaluate the quality of the reanalysis.



E1: SSH + SST

E3: SSH+SST+
Syn-CTD

Comparison between ROMS temperature analysis (fit) and withheld
observations (all available XBTs); the XBT data were not assimilated –
they are used here only to evaluate the quality of the reanalysis.



0 lag –
analysis skill

Comparison between ROMS subsurface temperature predictions
and all XBT observations in 2001-2002

       correlation                          RMS error (oC)
E3: SSH+SST+
Syn-CTD



0 lag –
analysis skill

1 week lag –
little loss of skill

Comparison between ROMS subsurface temperature predictions
and all XBT observations in 2001-2002

       correlation                          RMS error (oC)
E3: SSH+SST+
Syn-CTD



0 lag –
analysis skill

1 week lag –
little loss of skill

2 week lag –
forecast begins
to deteriorate

Comparison between ROMS subsurface temperature predictions
and all XBT observations in 2001-2002

       correlation                          RMS error (oC)
E3: SSH+SST+
Syn-CTD



0 lag –
analysis skill

1 week lag –
little loss of skill

2 week lag –
forecast begins
to deteriorate

3 week lag –
forecast still
better than …

Comparison between ROMS subsurface temperature predictions
and all XBT observations in 2001-2002

       correlation                          RMS error (oC)
E3: SSH+SST+
Syn-CTD



0 lag –
analysis skill

1 week lag –
little loss of skill

2 week lag –
forecast begins
to deteriorate

3 week lag –
forecast still
better than …

no assimilation

Comparison between ROMS subsurface temperature predictions
and all XBT observations in 2001-2002

       correlation                          RMS error (oC)
E3: SSH+SST+
Syn-CTD



E1 E3*

 E1: SSH, SST
*E3: SSH, SST, Syn-CTD
Syn-CTD 4-day CSIRO subsurface 
projection of satellite obs to T(z), S(z)



The eigenvectors of …       RT(t,0) W R(0,t)

…having the largest eigenvalues, are the fastest
growing perturbations of the Tangent Linear model.

They correspond to the right Singular Vectors of
R(0,t) (the ROMS Tangent Linear propagator)

These describe perturbations to the initial conditions
that lead to the greatest uncertainty in the forecast

ADROMS            TLROMS

weights to define norm

Forecast uncertainty: 
Ensemble predictions using Singular Vectors of the forecast



assimilation forecasts

SV of forecast R(φ0)
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Forecast uncertainty: 
Ensemble predictions using Singular Vectors of the forecast



• The optimal perturbations when we include XBTs are
more realistic: they tend to be concentrated at the
surface, where most of the instability takes place.

Forecast uncertainty: 
Ensemble predictions using Singular Vectors of the forecast



Ensemble Prediction: E1

15-day forecast1-day forecast 8-day forecast

White contours: Ensemble set
Color: Ensemble mean
Black contour: Observed SSH



Ensemble Prediction: E2

15-day forecast1-day forecast 8-day forecast

White contours: Ensemble set
Color: Ensemble mean
Black contour: Observed SSH



• The optimal perturbations when we include XBTs are
more realistic: they tend to be concentrated at the
surface, where most of the instability takes place.

•• When used in an ensemble prediction system the spreadWhen used in an ensemble prediction system the spread
of E2 is smaller and verifies better with observationsof E2 is smaller and verifies better with observations
than that of E1.than that of E1.

•• Subsurface XBT data significantly improves the forecastSubsurface XBT data significantly improves the forecast
•• We have a further source of subsurface We have a further source of subsurface informationinformation

based on surface observations: based on surface observations: synthetic-CTDsynthetic-CTD
–– a statistically-based proxy deduced from historical EAC dataa statistically-based proxy deduced from historical EAC data

Forecast uncertainty: 
Ensemble predictions using Singular Vectors of the forecast



Conclusions
• Skillful ocean state predictions up to 2+ weeks
• Assimilation of SST and SSH constrains surface well
• Subsurface information required (adjoint not enough)

– improves estimate of the subsurface
– makes forecasts more stable to uncertainty in IC

• Synthetic-CTD subsurface projection adds significant
analysis and forecast skill
– syn-CTD is a linear empirical relationship, suggesting a simple

dynamical relationship links surface to subsurface variability
– could be built in to the background error covariance

(Weaver et al 2006, “…balance operator for variational ocean
data assimilation …”, QJRMS)

• Singular Vectors demonstrate ensemble predictions and
uncertainty estimation

• Computational effort: 1 week analysis + forecast takes
4 hours on 8-processors (AMD Opteron-250) (1/4o resolution)



•• Include balance terms in the IS4DVARInclude balance terms in the IS4DVAR
•• Improve surface forcing andImprove surface forcing and  open boundaryopen boundary

conditionsconditions
–– better external analysis - BLUELINKbetter external analysis - BLUELINK
–– include boundary data in control variablesinclude boundary data in control variables
–– improve surfaceimprove surface  forcing via weakforcing via weak

constraint data-assimilation (WS4DVAR)constraint data-assimilation (WS4DVAR)
•• Use along-track SSH data instead of Use along-track SSH data instead of griddedgridded

multi-satellite analysismulti-satellite analysis
•• Explore sensitivity to length of assimilationExplore sensitivity to length of assimilation

windowwindow

Future Work


