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Context

• Two-way coupling between realistic regional or global numerical
models simulating oceanic and atmospheric circulations.

• What is the legitimacy of the coupling methods used presently from
the mathematical and physical point of view ?

This question has been very few studied in the literature.

Which future improvements can we expect ?

• Seen in a few papers :

OASIS (and MCT) is NOT a coupling scheme, this is a software to
facilitate the implementation of a given coupling scheme !



Context

• Two-way coupling between realistic regional or global numerical
models simulating oceanic and atmospheric circulations.

• What is the legitimacy of the coupling methods used presently from
the mathematical and physical point of view ?

This question has been very few studied in the literature.

Which future improvements can we expect ?

• useful for several reasons
• effect of orography in coastal regions
• better resolution of the diurnal cycle
• better representation of the interactions between OBL and ABL
• etc ...



Formalism of the problem

Ωatm

Ωoce

Loceuoce = foce

Latmuatm = fatm

∂Ωext
atm

∂Ωext
oce

Γ

CONSISTENCY ?

• oceanic model: Loce

• atmospheric model: Latm

• state variables: uatm and uoce

The coupling problem under interest reads :

Find uoce and uatm that satisfies

Loceuoce = foce in Ωoce × [0, T ]

Boceuoce = goce in ∂Ωext
oce × [0, T ]

Latmuatm = fatm in Ωatm × [0, T ]

Batmuatm = gatm in ∂Ωext
atm × [0, T ]

+ a given consistency on Γ× [0, T ]

The problem must be completed by appropriate boundary
conditions on Γ× [0, T ]



Simplified problem

For our theoretical study we propose to work on a simplified problem :

Latm =
∂
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(equations for vertical diapycnal transport of a tracer or velocity component)

• diffusion equations (with spatially variable coefficients) are assumed
to satisfactorily describe the effect of turbulent mixing in the
boundary layer

• the diffusion profiles Ka
z (z) and Ko

z (z) are determined by a K-profile
closure model (like Troen and Mahrt scheme or KPP scheme).

• Those equations are directly forced by air-sea fluxes.

This simplified problem is representative of the ”true” coupling
problem and contains a large part of the difficulties.



Natural boundary conditions

More generally we look for the solution which satisfies the physical
transmission conditions (continuity of the solution and of its normal
derivative on the interface)

• For the first part of this talk we make the assumption that the
boundary layers are explicitely resolved

Ideally, the solution u of the coupled problem should satisfy

uatm(0, t) = uoce(0, t) Ka
z
∂uatm

∂z
(0, t) = Ko

z
∂uoce

∂z
(0, t)

Required consistency = continuity of the solution and the normal
component of its flux across the internal interface !



How to impose this consistency ?

We are looking for a new algorithmic approach... but under some
constraints

• Affordable from the computational cost point of view.

• Not only a mathematical problem, physical parameterizations must
be rigorously taken into account ⇒ this is a crucial point.

• Easy management of non-conformity in space and time.

• Minimal modifications of existing numerical codes.

Optimized Global-in-Time Schwarz Methods appear to be a good
compromise + a rich and rigourous mathematical framework



Global-in-time Schwarz method
We temporarily remove the subscript atm and oce

Iterative process : first guess u0
2(0, t)

Ω1

Ω2

z = 0

z = −L1

z = L2

{ C1u1 = C1u2

C2u2 = C2u1

B1u1 = g1

B2u2 = g2

ti ti+1ti−1 ti+20 T


L1u

k
1 = f, in Ω1 × [ti, ti+1],

uk
1(z, t = ti) = u0(z), z ∈ Ω1,

B1u
k
1(−L1, t) = g1, t ∈ [ti, ti+1],
C1u

k
1(0, t) = C1u

k−1
2 (0, t), in Γ× [ti, ti+1],


L2u

k
2 = f, in Ω2 × [ti, ti+1],

uk
2(z, t = ti) = u0(z), z ∈ Ω2,
B2u

k
2(L2, t) = g2, t ∈ [ti, ti+1],

C2u
k
2(0, t) = C2u

k
1(0, t), in Γ× [ti, ti+1],

Loop
Until

ConvergenceΓ

We must choose the transmission conditions C1 and C2 to match the
required consistency and to optimize the convergence speed.



Optimized Global-in-time Schwarz method

First, let’s consider the coupling of two diffusion equations with constant
and discontinuous coefficients (e.g. molecular viscosities)

Lj =
∂

∂t
− νj ∂

2

∂z2
, (j = 1, 2)

we intend to impose the continuity of the solution and of the normal
components of the fluxes across Γ

u1(0, t) = u2(0, t), ν1
∂u1

∂z
(0, t) = ν2

∂u2

∂z
(0, t)

easiest way to impose it : Dirichlet-Neumann type algorithm{ L1u
k
1 = f in Ω1 × [ti, ti+1]

uk1(0, t) = uk−1
2 (0, t) on Γ× [ti, ti+1] L2u

k
2 = f in Ω2 × [ti, ti+1]

ν2
∂uk2
∂z

(0, t) = ν1
∂uk1
∂z

(0, t) on Γ× [ti, ti+1]



Optimized Global-in-time Schwarz method

Convergence factor for a Dirichlet-Neumann algorithm

ρDN =
∣∣∣∣ek+1

ek

∣∣∣∣ =
√
ν2
ν1

1 ρDN is not always smaller than one i.e. for certain values of the
diffusion coefficients the algorithm is divergent

2 slow convergence speed if the discontinuity between ν1 and ν2 is
small.

Now let’s suppose a new kind of transmission conditions of Robin
(Fourier) type

ν1
∂u1

∂z
(0, t) + Λ2u1(0, t) = ν2

∂u2

∂z
(0, t) + Λ2u2(0, t),

−ν2 ∂u2
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(0, t) + Λ1u2(0, t) = −ν1 ∂u1

∂z
(0, t) + Λ1u1(0, t),

with Λ1 and Λ2 are two local or nonlocal operators (P.L. Lions, 1990).



Optimized Global-in-time Schwarz method
By introducing ek

j = uk
j − u? and defining the symbols Λ̂jej = λjêj one

gets in Fourier space

ρRR =

˛̨̨̨
˛ bekjbek−1
j
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(λ1 + ν2σ

−
2 )
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+
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(λ2 − ν1σ+
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˛̨̨̨
, σ±j = ±

s
iω

νj

The optimal transmission conditions (ensuring a convergence in 2
iterations) are given by

λ1 =
√
iων2, λ2 =

√
iων1, F−1(λj)∗uj =

Z +∞

0

F−1(λj)(τ)uj(x, t−τ)dτ.

those operators are non-local in time, we look to approximate them by
local ones (polynomial in iω) λj = pj + qjiω + ...,
the best zeroth-order approximation of the absorbing conditions is the
solution of the minimax problem

min
p1,p2

(
max

ω∈[ωmin,ωmax]
ρRR

)
ωmin and ωmax corresponds to the minimum and maximum temporal
frequencies expected during a simulation.



A few theoretical results
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√̃
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ρcla

ρcla(ωmin) > ρ(ωmin)

ρ(ωmin) = ρ(ωmax) ⇒ the algorithm converges equally well for low and high
frequencies

F. Lemarié, L Debreu and E. Blayo, Towards an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially

variable coefficients. Part 1 : the constant coefficients case, submitted to SIAM Journal on Scientific Computing



Do we meet the expectations ?
• The optimization of the convergence factor makes the method

robust and tractable from the computational cost point of view.

• This method requires minor modifications of existing codes:
adjustments of the tridiagonal matrix for the implicit treatment of
diffusion to enable the use of Robin-type conditions.

• The management of non-conformity in space and time is natural and
a lot of theoretical studies have been done in the context of
Schwarz-like mehods (M.J. Gander, 2003; Blayo et al, 2007).

Last, but not least, we said:
• ”Not only a mathematical problem, physical parameterizations must

be rigorously taken into account ⇒ this is a crucial point.”

Unfortunately this is also a very complex point !

1 We extended previous results to the case with spatially variable
coefficients given by KPP-like closure schemes.

2 We also have to be consistent with the air-sea fluxes
parameterizations.



Reminder about the derivation of bulk formulae
The turbulent terms (〈u′w′〉0, 〈θ′w′〉0, ...) involved in the computation
of air-sea fluxes are generally computed via the bulk formulae.

Starting from the Reynolds averaged equations the following assumptions
(supposed valid in the atmospheric surface layer) are done

• hydrostaticity + Boussinesq assumption

• horizontal homogeneity

• quasi-stationarity

• Coriolis force and HPG are negligible

Finally we get the constant flux layer approximation :

∂

∂z

»˙
u′w′

¸
+ ν

∂ 〈u〉
∂z

–
= 0

∂

∂z

»˙
θ′w′

¸
+ ν

∂ 〈θ〉
∂z

–
= 0

by neglecting the molecular effects and by noting τ the constant flux
of momentum and QH the constant flux of sensible heat we get

−〈u′w′〉0 =
τ

ρa
= u2

∗ − 〈θ′w′〉0 =
QH
ρaCp,a

= Q0



Reminder about the derivation of bulk formulae

We look to parameterize the terms 〈u′w′〉0 and 〈θ′w′〉0 in term of the
mean quantity of the flow.
⇒ semi empirical Monin Obukhov similarity theory

It argues that the only important turbulence parameters in the dry

surface layer are u∗, Q0, z and β =
g

〈θ〉 (the buoyancy).

Thanks to a dimensional analysis the following non dimensional π-groups
are found

π1 =
∂ 〈u〉
∂z

kz

u∗
π2 =

∂ 〈θ〉
∂z

kzu∗
Q0

=
∂ 〈θ〉
∂z

kz

θ∗
π3 =

zkβQ0

u3
∗

=
z

LMO

Finally we empirically find functional relations between those groups

π1 = φm(π3) π2 = φs(π3)

where φm and φs are universal functions (Businger et. al., 1971;
Hogstrom, 1988).



Reminder about the derivation of bulk formulae

Integration of the previous relations (Paulson, 1970) gives the mean
quantity profiles in the surface layer, but not below

〈u〉 (z) = SSU +
u∗
k

»
ln

„
z

z0

«
− ψm

„
z

LMO

«–

〈θ〉 (z) = SST +
θ∗
k

»
ln

„
z

zθ

«
− ψs

„
z

LMO

«–
Thanks to those equalities we get

~τ

ρa
= CD(z, z0, LMO)|∆~U |∆~U

QH
ρaCp,a

= CD(z, z0, zθ, LMO)|∆~U |∆θ

where ∆~U and ∆θ are the difference between the values at the first
vertical level in numerical models.

First important remark :

• All this theory is valid only at a certain distance from the air-sea
interface, above the direct influence of the surface roughness
elements.



Inclusion of air-sea fluxes in our model problem

We suggested to impose the following conditions on Γ

ρaK
a
z
∂uatm

∂z
(0, t) = ρoK

o
z
∂uoce

∂z
(0, t) uatm(0, t) = uoce(0, t)

but the behaviour of the flow near Γ (in the surface layer) is described
by a function of parameterization and we have a poor knowledge of
what happens near the viscous sublayer.

We must formulate the problem to take this into account : in practice
the new consistency we look to impose is thus

ρaK
a
z
∂uatm

∂z
(0, t) = ρoK

o
z
∂uoce

∂z
(0, t) uatm(0+, t)− uoce(0

−, t) = γSL

where γSL = F (u∗, θ∗, z0, zθ, LMO).

Note that by imposing explicitely the equality of the fluxes we implicitly
impose the jump conditions at the interface



The following step from a theoretical point of view : design
transmission conditions of Robin type (i.e. with free parameters)

consistently with the surface layer parameterization. (ongoing work)

However the Schwarz method ”as is” (i.e. without optimization) has a
lot of practical advantages

Let’s suppose that we intend to impose8>>><>>>:
ρaK

a
m
∂~Uatm

∂z
(0, t) = ρoK

o
m
∂~Uoce

∂z
(0, t) = ~τ

ρaCp,aK
a
s
∂θatm
∂z

(0, t) = ρoCp,oK
o
s
∂θoce

∂z
(0, t) = Qnet

as well as the continuity of the freshwater flux.

Do the current OA coupling methods address this problem satisfactorily ?



A schematic view of existing methods

• For regional applications

atmosphère

océan

∆ta

∆to

{

{
• For global applications : [0, T ] = ∪Ni=1[ti, ti+1]
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Instantaneous fluxes vs averaged fluxes

B. Large, Ocean Weather Forecasting: An Integrated View of Oceanography :

”The sign of turbulent fluxes can be uncertain on time scales less than 10
minutes and hourly fluxes are more relevant”

”When averaging, the uncertainty should diminish as wave effects start
to average out”

”The transfer coefficients CD and CH are determined empirically from
measurements averaged over about an hour (e.g. Large and Pond 1981)
and may not be applicable for instantaneous output from an atmospheric
model grid point.”

the choice can be to implement more detailed physical processes
(generally neglected by Bulk formulations) relevant to high temporal
frequency coupling : spray contributions to heat fluxes and the wavy
boundary layer (Bao et al., 2000).



Evaluation of existing methods

• Coupling at the time step level :

• relevancy of instantaneous fluxes ?

• the exchange of informations is done by considering an explicit
treatment of surface fluxes

• not straightforward to implement

• Coupling by time windows :

• the oceanic state used to compute fluxes on a given time window is
systematically delayed by one time window

• corresponds to one (and only one) Schwarz iteration ⇒ there is no
strict equality of the fluxes (one iteration does not make the
convergence)

By using a Global-in-time Schwarz algorithm we can circumvent all
these problems



A preliminary study in a real case simulation

WRF / ROMS-AGRIF coupling : simulation of tropical cyclone Erica
(2003), ANR project ”Cyclones and climate” (Ch. Menkes, Nouméa)

dxa = 35km, dta = 180s, dxo = 13km, dto = 1800s
• Boundary data : ECCO, NCEP2 reanalysis
• Run coupled model for 15 days (60 x 6hours), no flux correction, no

SST/SSS correction
• OA fluxes directly computed via WRF surface layer scheme (based

on MOST)

ti ti+1
ti+2ti+1

Loceu
k
oce = foce

Latmuk
atm = fatm

S

Foa(uk
atm,

〈
uk−1

oce

〉
)

convergence

yes

no

〈
uk

oce

〉



Details of the implementation

ti ti+1 ti+2ti−1

k=1

k=3

k=2

k=1

k=2

k=3

k=1
k=2

k=3

linear reconstruction of
the fluxes on each time win-
dow thanks to F (ti) and
F [ti,ti+1]

grid to grid interpolation : SCRIP package with optimizations (+

extrapolations)

For this preliminary study the exchanges between numerical models is
done by files (no Message Passing).

It’s important to note that’s this method can be implemented by using
”traditional” couplers
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Summary and expectations

We suggest a new algorithmic framework for OA coupling

• an iterative process which improves the consistency of the
coupled solution and which can be theoretically accelerated via the
resolution of an optimization problem

• a quite easy to implement method :

• minor modifications of existing codes.

• on parallel architectures communications between both models are
required only one time per time windows.

Strong qualities :

• Optimized Schwarz Methods use transmission conditions adapted to
the underlying PDE, which greatly improve their convergence rate.

• A theoretical framework which could assess the compatibility
between physical parameterizations of OBL and ABL.

Strong drawback : the use of an iterative process



Summary and expectations

• This is a first step towards efficient transmission conditions but we
need to enforce the link with the surface layer parameterization.

Objective : be able to obtain the best possible approximation of the
converged solution with 2 iterations (optimal control theory)

• We must assess the improvements brought to the physical results.

Objective : implementation of a simplified test-case to facilitate the
intercomparison with other methods.

There is a strong need of this kind of testcase !

Open problems :

• initialization and data assimilation in coupled model

• coupling and nesting ?


