Roms-Agrif Two-Way nesting algorithms: Latest Developments

Laurent Debreu

INRIA, Laboratoire Jean Kuntzmann, Grenoble

October 06, 2008

Following Debreu and Blayo, 2008: "Two-Way embedding algorithms: a review", Ocean Dynamics, In press

Examples

Mesh Refinement methods

Summary and applications

Examples

Mesh Refinement methods

Summary and applications

Examples of two way nesting applications OPA Model

Jouanno et al, *Ocean Modelling*, 2008

イロト イポト イヨト イヨト

э

Chanut et al, JPO, 2008

Examples of two way nesting applications OPA Model

Biastoch et al, Nature, 2008

・ロト・日本・モート モー うへぐ

Examples

Mesh Refinement methods

Basic Algorithm Time stepping issues Update schemes Conservation Sponge Layer

Summary and applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

Mesh Refinement methods

Basic Algorithm

Time stepping issues Update schemes Conservation Sponge Layer

Summary and applications

The grid hierarchy and its time integration

P: interpolation *R*: restriction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Examples

Mesh Refinement methods

Basic Algorithm Time stepping issues

Update scheme Conservation Sponge Layer

Summary and applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Time stepping issues: solution of a linear system Let's suppose we have to solve:

$$\mathcal{A}v = \mathcal{B}, \qquad \Delta q = \sin(x)$$

a)
$$\mathcal{A}_c v_c = \mathcal{B}_c \text{ on } \Omega_H$$

b) $\begin{cases} \mathcal{A}_f v_f = \mathcal{B}_f \text{ on } \omega_h \\ v_{f|_{\gamma_h}} = P v_c \end{cases}$

Naive approach One way

Coarse and fine grid errors: Naive approach

Time stepping issues: solution of a linear system Let's suppose we have to solve:

$$\mathcal{A} v = \mathcal{B}, \qquad \Delta q = \sin(x)$$

a)
$$\mathcal{A}_c v_c = \begin{cases} R \mathcal{B}_f & \text{in } \omega_H \\ \mathcal{B}_c & \text{in } \Omega_H \setminus \omega_H \end{cases}$$
, b) $\begin{cases} \mathcal{A}_f v_f = \mathcal{B}_f \text{ on } \omega_h \\ v_{f_{|\gamma_h}} = P v_c \end{cases}$

Update of the right hand side

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Time stepping issues: solution of a linear system

Let's suppose we have to solve:

$$\mathcal{A} v = \mathcal{B}, \qquad \Delta q = \sin(x)$$

$$\begin{pmatrix} \mathcal{A}_{c} & 0\\ 0 & \mathcal{A}_{f}\\ \mathcal{A}_{c\gamma} & \mathcal{A}_{f\gamma} \end{pmatrix} \begin{pmatrix} v_{c}|_{\Omega_{H} \setminus \omega_{H}}\\ v_{f} \end{pmatrix}$$
$$= \begin{cases} \mathcal{B}_{c} & \text{in } \Omega_{H} \setminus \omega_{H}\\ \mathcal{B}_{f} & \text{on } \omega_{h}\\ \mathcal{B}_{\gamma} & \text{in } \gamma_{h} \end{cases}$$

,

Multiresolution system on a composite grid

Coarse, fine and composite grid errors

Time stepping issues: split/explicit free surface

Barotropic time steps:

One Way approach: coupling at the baroclinic level

Time stepping issues: split/explicit free surface

How to perform the coupling at the barotropic level ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Time stepping issues: split/explicit free surface

How to perform the coupling at the barotropic level ?

Exchange between intermediate filtered quantities:

Examples

Mesh Refinement methods

Basic Algorithm Time stepping issues **Update schemes** Conservation

Summary and applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Update schemes

 Maximize the transfer of information for scales well resolved on the coarse grid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Filter out the small scales

Update schemes

SAC

Update schemes: Baroclinic Vortex

Day 30

Day 60

Day 0

Coarse Grid Reference Grid

Average

Examples

Mesh Refinement methods

Basic Algorithm Time stepping issues Update schemes **Conservation** Sponge Layer

Summary and applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Maintain conservation
- Quantify artificial loss

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let us consider a one dimensional domain and q, a solution of the following equation written in conservative form

$$\frac{\partial q}{\partial t} + \frac{\partial g(q)}{\partial x} = 0, \qquad g(q) = u_0 q$$
$$+ \bigcirc + \bigcirc \\ i_c \bullet \left| \bullet \odot \bullet \right| \bullet \odot + \odot$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us consider a one dimensional domain and q, a solution of the following equation written in conservative form

Composite grid approach:

$$Q^{n} = \sum_{-\infty}^{i_{c}} \Delta x_{c} q_{i}^{c,n} + \sum_{i_{f}}^{+\infty} \Delta x_{f} q_{i}^{f,n} \quad \left(\neq \sum_{-\infty}^{+\infty} \Delta x_{c} q_{i}^{c,n}\right)$$
$$Q^{n+1} = Q^{n} - \left[\Delta t_{c} g_{i_{c}}^{n} - \Delta t_{f} \left(g_{i_{f}-1}^{n} + g_{i_{f}-1}^{n+1/2}\right)\right] \neq Q^{n}$$

Artificial loss of conservation

Let us consider a one dimensional domain and q, a solution of the following equation written in conservative form

Flux correction:

$$q_{i_c}^{c,n+1,\star} = q_{i_c}^{c,n+1} + \frac{1}{\Delta x_c} \left[\Delta t_c \, g_{i_c}^n - \Delta t_f \left(g_{i_f-1}^n + g_{i_f-1}^{n+1/2} \right) \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us consider a one dimensional domain and q, a solution of the following equation written in conservative form

$$\frac{\partial q}{\partial t} + \frac{\partial g(q)}{\partial x} = 0, \qquad g(q) = u_0 q$$
$$+ \bigcirc + \bigcirc + \bigcirc \\ i_c \bullet | \bullet \odot \bullet | \bullet \odot + \bullet \bigcirc + \bullet \odot + \bullet \odot$$

Stability issues: g computed with centered schemes

$$q_{i_c}^{c,n+1,\star} = q_{i_c}^{c,n+1} + \underbrace{\frac{1}{\Delta x_c} \left[\Delta t_c \, g_{i_c}^n - \Delta t_f \left(g_{i_f-1}^n + g_{i_f-1}^{n+1/2} \right) \right]}_{\Delta t_c \left(\frac{1}{9} \Delta x_c u_0 \, \frac{\partial^2 q}{\partial x^2} \right)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First order accurate

Let us consider a one dimensional domain and q, a solution of the following equation written in conservative form

$$\frac{\partial q}{\partial t} + \frac{\partial g(q)}{\partial x} = 0, \qquad g(q) = u_0 q$$
$$+ \bigcirc + \bigcirc + \bigcirc \\ i_c \bullet | \bullet \odot \bullet | \bullet \odot + \bullet \bigcirc + \bullet \odot + \bullet \odot$$

Stability issues: g computed with 3rd order upwind schemes

$$q_{i_{c}}^{c,n+1,\star} = q_{i_{c}}^{c,n+1} + \underbrace{\frac{1}{\Delta x_{c}} \left[\Delta t_{c} g_{i_{c}}^{n} - \Delta t_{f} \left(g_{i_{f}-1}^{n} + g_{i_{f}-1}^{n+1/2} \right) \right]}_{\Delta t_{c} \left(-\frac{13}{216} (\Delta x_{c})^{2} u_{0} \frac{\partial^{3} q}{\partial x^{3}} \right)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

Mesh Refinement methods

Basic Algorithm Time stepping issues Update schemes Conservation Sponge Layer

Summary and applications

Sponge layer

 Maintain a strong consistency between high and coarse resolution solutions in the area where solutions interact (i.e. near the common interface)

Prevent waves reflection

Sponge layer

- Maintain a strong consistency between high and coarse resolution solutions in the area where solutions interact (i.e. near the common interface)
- Prevent waves reflection

$$\frac{\partial q_f}{\partial t} = \dots + (-1)^{n+1} (\Delta)^n \left[\mu_{x,\partial\omega} (q_f - Pq_c) \right]$$

$$= \dots + (-1)^{n+1} (\Delta)^n \left[\mu_{x,\partial\omega} \underbrace{(I - PR)}_{\text{filter}} q_f \right]$$
(1)

Examples

Mesh Refinement methods

Summary and applications

Roms_Agrif: summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \rightarrow integration in Roms_Agrif 2.0

Applications

Test cases similar to Penven et al, 2006, Ocean Modelling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Baroclinic vortex
- USWC15km-5km

Applications

Baroclinic Vortex

Fig. 1. Reference solution (V1) for the baroclinic vortex for days 0, 60 and 100. Tops eas surface elevation [cm], the contour interval is 10 cm. Bottom: sea surface temperature [°C], the contour interval is 0.2 °C. The box represents the embedded domain, in this case using the same resolution as the parent grid (10 km).

Applications Baroclinic Vortex

Free surface on the high resolution domain after 70 days: One-way (left), Two-way (right)

Applications

Baroclinic Vortex

Applications Baroclinic Vortex

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Applications USWC15-5