Island wakes

Madeira Archipelago case study

http://wakes.uma.pt

Outline

- Introduction
- Remote Sensing data
- Barotropic (2D) numerical study
- Baroclinic (3D) numerical study
- New hypothesis
- Future work

Acknowledgements

- FCT: POCI/MAR/57265/2004
- Changming Dong, UCLA, USA

Philosophy

"Never trust an observation without without a supporting theory."

Arthur Eddington, 1822-1944

"In geophysics, never trust a fact, or a simulation, without a supporting interpretation."

James McWilliams, 2006

Geographic setting

Geographic setting

Data INterpolating Empirical Orthogonal Functions

Writing time varying data $d(\varphi, \lambda, t)$ as a matrix $\mathcal{D} \in \mathbb{R}^{m \times n}$ where each row is associated with one point (φ, λ) and each column - with one epoch t we have linear algebra problem

$$D = USV^T$$

Beckers, J.-M. and Rixen, M. 2003. EOF calculations and data filling from incomplete oceanographic data sets. Journal of Atmospheric and Oceanic Technology, vol 20 (12), pp 1839-1856.

Reconstructed data

Reconstructed data

SST Dominant modes 2005-2007

Mode 1: 60.27% Mode 2: 8.11% Mode 3: 6.51% Mode 4: 4.21% Mode 5: 3.29%

CHL Dominant modes 2005-2007

Mode 1: 34.71% Mode 2: 13.02% Mode 3: 8.20% Mode 4: 6.38% Mode 5: 6.24%

0.01

0

300

300

-0.01

0.06

0.04

0.02

0

SLA Dominant modes 2001-2007

Mode I: 16.29% Mode 2: 8.4% Mode 3: 6.6% Mode 4: 5.66% Mode 5: 5.27%

0.05

Wake regimes Non-dimensional parameters

Wake regimes Non-dimensional parameters

Wake regimes Non-dimensional parameters

Non-dimensional

$Re = \frac{UL}{\nu_e},$	Reynolds number
$Ro = \frac{U}{Lf},$	Rossby number
$Fr = \frac{U}{NH},$	Froude number
$E_k = \frac{\nu_e}{fL^2},$	Ekman number (horizontal)
$L_d = NH/f,$	Baroclinic deformation radius
$Bu = \left(\frac{L_d}{L}\right)^2,$	Burger number

2D numerical study

2D numerical study

2D numerical setup

• Quasi-geostrofic approximation

$$\frac{\partial \zeta_0'}{\partial t'} + J\left(p_0', \zeta_0'\right) = \frac{1}{Re} \nabla^2 \zeta_0'$$

• Initial conditions

$$\begin{aligned} \zeta_0' &= \nabla^2 p_0' \\ x' &= 0, \text{ inflow} \to \begin{cases} \zeta_0' &= 0 \\ u' &= -\frac{\partial p_0'}{\partial y'} \\ \partial y' &= \text{cte} \end{cases} \end{aligned}$$

• Boundary conditions

obstacle
$$\rightarrow \begin{cases} \zeta'_{obs} = 0\\ u'_{obs} = -\frac{\partial p'_0}{\partial s} = 0 \rightarrow p'_0 = \text{cte} \end{cases}$$

 $y' = 0, y' = n \nabla y', \text{ walls } \rightarrow \begin{cases} \zeta'_0 = 0\\ p'_0 = p'_{inflow} \end{cases}$
 $x' = m \nabla x', \text{ outflow } \rightarrow \text{Orlansky} \end{cases}$

2D Symmetric case (Classical case)

2D Symmetric case (Classical case)

2D Assymmetric case

2D Assymmetric case

2D Assymmetric case

Re study

Nearby island effect

Nearby island effect

Flow direction

Flow direction

Flow direction

2D Case studies Summary

Case $(islands - inflow)$	Re	U $(m.s^{-1})$	ε	Eddy shedding period T_r
	50	0.088	0.02	$30 \mathrm{~days}$
Madeira-North	100	0.175	0.05	$15 \mathrm{days}$
	200	0.351	0.09	$7.5 \mathrm{~days}$
	50	0.088	0.02	no shedding; steady state at 60 days
Madeira+Desertas-North	100	0.175	0.05	no shedding; steady state at 30.5 days
	200	0.351	0.09	$6.3 \mathrm{~days}$
	50	0.227	0.15	no shedding; steady state at 10 days
Madeira-West	100	0.455	0.3	no shedding; steady state at 4.6 days
	200	0.909	0.61	19 hours
	500	2.273	1.52	5.5 hours
	50	0.227	0.15	no shedding; steady state at 8 days
Madeira+Desertas-West	100	0.455	0.3	no shedding; steady state at 3.5 days
	200	0.909	0.61	8.3 hours
	500	2.273	1.52	?

Table 1: Simulation parameters; $A_H = 100m^2 \cdot s^{-1}$, $L = 57 \times 10^3 m$ for North inflow cases, and $L = 22 \times 10^3 m$ for West inflow cases.

3D setup

3D setup

ROMS setup

• Horizontal boundary conditions

 \checkmark North

Meridional inflow, i.e.
$$u = 0$$
, $v(z) = \frac{c_1}{2} \left[1 + \tanh\left(\frac{z+h_s}{h_d}\right) \right]$, w=0

✓ South Numerical sponge (viscosity and diffusivity incremented linearly to southern edge of domain)

- ✓ East and West Slip conditions, i.e. u = 0;
- ✓ Boundaries around the island No-slip conditions, i.e. $\mathbf{v} = (0, 0, 0)$
- Vertical boundary conditions
- ✓ Bottom (z=-H, flat) No-slip conditions
- $\checkmark \quad Top \text{ Free surface} \\ w = \frac{d\eta}{dt}$

ROMS setup

✓ Velocity: $u(x, y, z, t_0) = 0, v(x, y, z, t_0) = v(z), w(x, y, z, t_0) = 0$

 $\checkmark\,$ Free surface elevation:

$$\eta_0(x, y, z, t) = \frac{c_1 f}{g} (x - 2x_m)$$

 \checkmark Temperature: thermal wind balance with the initial velocity field \checkmark Salinity: constant

Working hypothesis Dong et al., 2007

Working hypothesis Dong et al., 2007

Re sensitivity study

1.5

1

0.5

0

-0.5

-1

-1.5

Re sensitivity study

X (grid points)

Flow direction

Flow direction

Nearby island effect

New hypothesis (Madeira asymmetric case)

Theory vs observations

General conclusions

- Madeira island wake differs from the classical symmetric case
- Cyclonic eddy formation dominates
 => enhanced by stratification (3D)
- Small nearby islands (Desertas) suppress eddy shedding
- Madeira mesoscale eddy activity mixes 200-300m of surface water => DCM

Future work...

TIRIS - Three dimensional vortex Instability at high Reynolds number around IslandS

3rd and Final Call for Proposals

Contact/documents

Presentation

Projects

Publications

Presentation

Toulouse Hydraulic flume

Projects

from France, Spain, Germany and the UK, were awarded financial support to participated in an european integrated infrastructure initiative: HYDRALAB III, in order to study a 'continuum of wake regimes' in a laboratory setting. The experiments will take place during November 2008 in the rotating tank for geophysical studies, located in Grenoble, France.

Participants

Name	Position	Country
R. Caldeira	Researcher	Portuga
A. Stegner	Researcher	France
C. Dong	Researcher	USA
G. King	Researcher	UK
R. Penel	PhD student	t France
A. Valente	PhD student	t Portuga
A. Lazar		France

massively separated turbulent flows

Modelling Antarctic Flows

Nonlinear transfer of internal-tide energy and the effect of rotation: an experimental study on bottom reflection, subharmonic resonance. and scattering at a thermocline.

Coriolis effects in flows around and over isolated topographies

Rotating stratified flow over rough topography

The effect of rotation on axisymmetric gravity currents with stratified fluids and inclined

Future work...

TIRIS - Three dimensional vortex Instability at high Reynolds number around IslandS

Future work...

High resolution (realistic) numerical modeling

