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/1. Background

quality and resources.

The objectives of this study are:

This heavily-developed coastal region supports a large tourism industry. Local economies are often adversely
Impacted by damage and loss of property due to coastal erosion and storm events. Hence, beach re-nourishment
IS Important for mitigating coastal erosion in the region, and its success and coast depend on the availability of

A. Understand the primary processes leading to coastal change in Long Bay, SC

B. Quantify interactions between the underlying geological and physical processes that
result in coastal erosion and shoreline change, and the mechanisms responsible for
maintaining the offshore feature
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Figure 1. Total cyclogenesis
occurrences (1958-2000) along
the northeastern coast of the
United States (Bradbury et al.,

2003) Beach.

2. Field Study

A data collection was conducted for approximately 6-
month from October 2003 to April 2004, in the inner
shelf of Long Bay, South Carolina (Fig. 3). Specific
measurements are:

* Pressures

o Surface waves

o Currents

 Temperature & Salinity

e Suspended sediment concentrations (SSC)

« Sea floor bedforms

Moorings and Instruments (Fig. 4) — ADCP, Sea-Bird
SEACAT, MicroCAT, Acoustic Doppler Velocimeter,

Rotating Sonar, and pressure sensor.

Deployment periods:

1. October 2003 — December 2003
2. January 2004 — April 2004

In addition,
Tides data from NOAA/NOS CO-OPS tidal stations:;

Meteorological data from NOAA NDBC buoys -
FPSN7 and 41013

P ¥
[k
e w ;

| Figure 2. The thickness of Holocene sediment as defined thFough
seismic profiles. Sediment thickness ranges from 0.5 (orange) to —

Pulse-Coherent Acoustic Doppler Profiler, OBS, ABS,

WS4 UTM; Zone 17
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The United States eastern border is prone to many storm activities due to its geographic setup combined with the
Jet Stream dynamics. Based on a study of cyclogenesis occurrences for a 4-decade period from 1958 to 2000
(Bradbury et al., 2003), almost 50% of the total occurrence took place in the South Carolina coast (Fig.1). In a
recent study, however, it is expected not only the number of occurrence but also its strength will grow.

It IS reported in Atkinson et al. (1983) and Lee et al. (1985) that rates and pathways of sediment transport on the
Inner shelf of Long Bay are influenced by local winds associated with the passage of storms. This study is

motivated to assist decision makers in mitigation of property damages and losses and management of coastal
resources (1st motivation). The 2"d motivation is derived from a discovery of a large sand deposit at 4.5 km off
Myrtle Beach, during the South Carolina Coastal Erosion Study (Hansen, 1998). This sand bar is an elongated
shape in a dimension of 10-km long, 20-km wide and about 3-m thick (Fig. 2). Analysis of sediment grab sampling
taken from the Study has indicated the feature is dated 10,000 years (Holocene).
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more than 6 meters (purple), and the thickest deposits are near 79°30 79°00 78°30 0w
tidal inlets. An exception is the sand bar 4.5-km offshore of Myrtle Figure 3. The Long Bay, South Carolina,

study area: Eight mooring sites are in so
red dots. Site 8 is at the middle of a sho
oblique sand bar. Superimposed are
bathymetric contours at 2-m intervals.
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Figure 4. Mooring locations and sets of images of tripods with a
variety of oceanographic instruments. A set of pictures in the upper

portion is designed to measure bed-flow interactions, and in the lower

portion to observe mean-flow.

/3. Time series of data

Response to a large scale weather system

1. Tropical storm ("T" & shaded in yellow)
2. Cold front ("C" & shaded in blue)
3. Warm front ("W" & shaded in pink)

~

3 major different types of storms in the study area (Austin and Lentz, 1999): : Wind forcing predominantly varies

: a weather band frequency (3-10

: days). There are strong correlations

at the frequency between wave
: energy and wind forcing, and
: between SSC and wind forcing. It

: appears a certain wind direction such
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4. Modeling Work

Figure 4. observations from February 2 to April 24, 2004: Wind at FPSN7 in the 1st panel; Significant
wave height (blue) and Orbital velocity (red) in the 2" panel; Uncalibrated suspended sediment
concentration (SSC) in the bottom 1-m layer in the 3 panel; Cumulative sediment flux (m3/hr) in the
cross-shore (blue) and along-shore (green) directions. Vertical partitions in each panel represent the
duration of each storm events in yellow for a tropical storm, light blue for a cold front and pink for a warm

4-A. Modeling Components (Warner et al., 2006)

ROMS

v 3-D primitive, free surface equations

v' using 2 time-split method

v coupled sediment dynamics

4-B. South Carolina Modeling Domain
& Confiqurations

Dimension
Horizontal: 120 km x 300 km
Vertical, Z <350 m

North/Carolina &
1

Charlolte
O

Resolution
T horizontal: 1-km
Cape Fear vertical: 20-layer

Cape Romain

3 open boundaries:
northeast,

Southeast, &
southwest
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Near future

v' curvilinear & terrain-following coordinates N =

Present

The magnitude and frequency with

- which warm fronts, cold fronts and

: tropical storms pass through Long

: significance to the development of
- regional sediment budgets.

- as northeastward and southwestward

Bay, SC, may therefore be of great

at

SWAN

Investigate oceanic response to storm events, using ROMS and SWAN (Simulating WAves Neashore) model.

v' solves atransport equation for wave action

density N,

energy density

v coupled bottom boundary layer dynamics

Relative frequency

v output: wave height, direction, wave length,
bottom orbital velocity, surface and bottom

wave perio

4-C. Forcing &

Parameter

1. Tides
2. Wind

3. Waves
3’. Waves

ds.
BC values
Source
*: separate run for
ADCIRC now, ROMS + SWAN
NARR (NCEP) coupling in the near

SWAN* for ROMS ™ure

WW3 for SWAN
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ﬁSimulation Results

Characteristics of

Wind oceanic response

Subtidal Current & Elevation Fields
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Throughout the storm event, winds blow southwestward
constantly. There is no particularly notable peak of the event.

Subtidal circulations in the sea surface and bottom layers are
mainly southwestward, the same direction as winds, before and
after the passing of the storm. Currents are relatively weak at
the center of the Bay.

Higher pressure sets up the southwestern portion of the Bay.

/ Characteristics of Warm Fronts

Wind oceahic response
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/. Summary of FIndings

of storms:

Topical storm (TS) — constant southwestward flow and
upwelling

event; a very definitive mushroom-cap shape of
circulation for the 2" half.

by a pair of cyclonic and anti-cyclonic circulation
patterns for the later part of the event.

:8. Feature Works

* Numerical study on sediment transport

* Numerical study on wave-current
interactions

:+ Coupling ROMS-SWAN
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Cold front (CF) — northeastward flow for the 15t half of the

Warm front (WF) — persistent southwestward flow, followed
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Characteristics of Cold Fronts

Wind oceanic response
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Winds shift from northeastward for the 1st half of to
northeastward/southeastward for the 2nd half of th
of wind shift progression is almost symmetric.

Subtidal coastal circulations are northeastward for fhe both sea
surface and bottom layers prior to the passing of th
the circulation patterns are drastically different, forming strong
coastal currents near Cape Romain and Fears in thje surface
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event. The profile

front. However,

whereas strong on-shore currents at the center of the Bay in the

are two cells are developed — cyclonic gyre in the southwestern

than the 15t in which the whole inner-shelf is depressed, especi
near Myrtle beach.

\ bottom layer, named “mushroom-cap circulation”. Hence, there

portion and anti-cyclonic gyre in the northeastern part of the Bay.

The pressure set-up is more complicated for the 2"d half of the event

ally

mVinds blow southwestward persistently prior to the passing of a

IS asymmetric, having longer duration for the 15t part of the even

Before the passing of the front, the surface and bottom-layer

warm front, and then change to northeastward or southeastward
post to the passing of the front. The progression profile of wind shift

currents flow in the same direction as winds. After the front passage,
the surface currents form strong coastally-intensified flows south of

~N

t.

Cape Fear and relatively weak flows else-where except an area

with

steep topography. The currents at the bottom layer develop a
clonic circulation the most of Long Bay interior, with relatively
strong speed e is of the Bay. The currents south of Cape

Fear

flow parallel to shoreline with the surface currents.

Pressure is low for the most part of bay, except around Cape
Romain for the 15t half. The pattern becomes almost opposite fo
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7-1. Strong correlation in oceanic response to storms. 7.2 A total of 12 storms over a 2-month period
However, the response is different to different types 2003: 2 TS, 7 CF & 2 WF

Each storm plays a significant role in the coastal
circulation. Two-layer (sea surface and bottom layers)
analysis indicates that upwelling/downwelling is a local

forcing. Rather, it seems to be caused by basin-scale
pressure setup/setdown. Potentially this secondary

circulation play a role in sediment transport. A total of 11
storm events has been observed over a 2-month duration.
Sediment scouring/deposit can be substantial, if integrated

over these storm episodes.
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