If-less KPP

Alexander Shchepetkin, I.G.P.P. UCLA

with input from: Xavier Capet François Colas Jim Mcwilliams

San Diego, CA, October 2005

. Why KPP?

...don't ask.

• Why if-less?

if-switches may cause:

discontinuities of second derivative discontinuities of first derivative discontinuities of function hysteresis and multiple solutions

• To what extend if-less?

...identify and eliminate the most offending ones

...this is a data-assimilation workshop.

KPP boundary layer model:

Extent of PBL h_{bl} is determined from bulk Richardson number (LMD94)

$$Ri_{b}(z) = \frac{\Delta zg \left[\rho(z) - \rho_{r}\right] / \rho_{0}}{|\mathbf{u}_{r} - \mathbf{u}(z)|^{2} + V_{t}^{2}(z)} \qquad Ri_{b}(-h_{bl}) = \text{Ri}_{cr} = 0.3$$

after which h_{bl} is checked against Monin-Obukhov $h_{\text{MO}} = u_*^3 / (\kappa \cdot B_f)$, and Ekman $h_{\text{Ek}} = 0.7 u_* / f$ depth and limited by both of them in the case of stable buoyancy forcing $B_f > 0$.

Once h_{bl} is known $K_{m,s}(z) = w_{m,s} \cdot h_{\text{bl}} \cdot G(z/h_{\text{bl}})$ where G(.) is universal non-dimensional shape function and $w_{m,s} = \kappa u_* \cdot \psi_{m,s} \left(zB_{\text{f}}/u_*^3 \right)$.

- relies on Monin-Obukhov similarity theory
- KPP a bulk, non-local model of intermediate complexity
- a quasi-equilibrium, diagnostic model
- multi-process model
- widely used (CCM, POP, MIT, OPA); mostly for climate modeling

Evolution of KPP: Summary of changes in KPP since 1994 by W. Large and G. Danabasoglu (2003), (2005):

- Turbulent velocity scale limit in **stable** regime
- Diurnal cycle in SW Rad. heat flux
- Critical bulk *Ri* depends on vertical resolution
- C_v depends on BVF
- Correct Ekman and Monin-Obukhov depth limit computations
- Compute interior convection after BL mixing is done
- Modify usage of N in turbulent shear computation
- Quadratic interpolation of Ri to find h_{bl}
- Monin-Obukhov depth limit is considered for elimination

Motivation

Early ROMS solution exhibit biases in thermocline depth

• too shallow in most cases

Overall excessively sensitive to numerical discretization

- h_{bl} fields are too noisy
- resolution drift: h_{bl} tends to go deeper with grid refinement

Sources of discontinuous behavior:

- $Ri_b(z)$ oscillates if $\mathbf{u}(z)$ is Ekman spiral (prevented only by h_{Ek} -limit)
- hysteresis h_{MO} limitation logic
- hysteresis h_{Ek} limitation logic
- vertical grid-point locking

Integral formulation of PBL

• $Ri_b(z)$ disregards velocity profile and 3D-nality within PBL

Calibration and tuning

- parameterization of elementary processes
- 1D experience
- 3D experience

Criterion for finding h_{bl} : We define surface PBL as an integral layer within which net production of turbulence due to shear-layer instability is balanced by dissipation due to stratification,

$$Cr(z) = \int_{z}^{\text{surface}} \mathcal{K}(z) \left\{ \left| \frac{\partial \mathbf{u}}{\partial z} \right|^{2} - \frac{N^{2}}{\text{Ri}_{\text{cr}}} - C_{\text{Ek}} \cdot f^{2} \right\} dz' + \frac{V_{t}^{2}(z)}{z}$$

and search for crossing point Cr(z) = 0.

$$N^2 = -\frac{g}{\rho_0} \cdot \frac{\partial \rho}{\partial z}\Big|_{ad}$$
 is B-V frequency ($ad \equiv adiabatic$);

f is Coriolis parameter; C_{Ek} is a nondimensional constant;

 $V_t^2(z)$ is unresolved turbulent velocity shear (same as in LMD94);

Integration Kernel $\mathcal{K}(z) = \frac{\zeta - z}{\epsilon h_{\text{bl}} + \zeta - z}$ is to ignore contribution from

near-surface sublayer ϵh_{bl} where M-O similarity law is not valid (plays the same role as to distinguish between ρ_{ref} vs. ρ_{surf} in Ri_b of LMD94). ζ is free surface; $\epsilon = 0.1$.

• Same result as Ri_b the case of linear velocity profile, but otherwise

$$\int_{z'}^{z''} \left| \frac{\partial \mathbf{u}}{\partial z} \right|^2 dz \ge \frac{|\mathbf{u}'' - \mathbf{u}'|^2}{z'' - z'}$$

- Cr(z) is **monotonic** for Ekman spiral \Rightarrow no sudden jumps of h_{bl}
- Numerically more attractive, since $\mathbf{u}(z)$ and $\rho(z)$ can be reconstructed as continuous functions
- Avoids introduction of *reference* potential density: basically integration Brunt-Väisäla frequency. Allows formalism of *adiabatic* derivatives and differences to achieve monotonicity
- Correct account for thermobaric effect: Bill Large: to determine extent of BL one must bring water parcel from reference depth to $z = -h_{bl}$ and compare its density with the ambient fluid there. We never did it this way in ROMS community (?)
- Avoids ambiguity for merging top and bottom BLs

Pure physical limits:

destabilizing vs. stabilizing effects:

• balance
$$\left|\frac{\partial \mathbf{u}}{\partial z}\right|^2$$
 vs. $\frac{N^2}{\text{Ri}_{cr}} \Rightarrow$ shear layer instability
• $\left|\frac{\partial \mathbf{u}}{\partial z}\right|^2$ vs. $C_{\text{Ek}} \cdot f^2 \Rightarrow$ turbulent Ekman layer

• negatively forced
$$\frac{N^2}{\text{Ri}_{cr}}$$
 vs. $V_t^2 \Rightarrow$ free convection

Monin-Obukhov depth limit
$$h_{bl} \leq h_{MO} = \frac{C^{MO} \cdot u_*^3}{\kappa \cdot B_f}$$
 if $B_f(z) > 0$.

Because of solar radiation absorption, buoyancy forcing $B_{\rm f} = B_{\rm f}(z)$ increases with depth, possibly changing sign from unstable to stable \Rightarrow a case when $B_{f}(-\text{overestimated } h_{bl}) > 0$, but $B_{f}(-h_{MO}) < 0 \Rightarrow$ **hysteresis** and oscillations in $h_{\rm bl}$

solution # 1: (2003) use $B_f = B_f(-h_{MO})$ in computation of h_{MO} , i.e. implicit search for k enclosing z^* , such that

$$z_k \leq z^* \leq z_{k+1}$$
 and $h_{\mathsf{MO}}(z_k) \leq |z^*| \leq h_{\mathsf{MO}}(z_{k+1})$

$$\frac{h_{\text{MO}k} \left(z_{k+1} - z^* \right) + h_{\text{MO}k+1} \left(z^* - z_k \right)}{z_{k+1} - z_k} + z^* = 0$$

resulting in
$$h_{\text{MO}} = -z^* = \frac{\frac{C^{\text{MO}}u_*^3}{\kappa} \left(B_{\text{f}_{k+1}}' z_{k+1} - B_{\text{f}_k}' z_k \right)}{B_{\text{f}_{k+1}}' B_{\text{f}_k}' \left(z_{k+1} - z_k \right) + \frac{C^{\text{MO}}u_*^3}{\kappa} \left(B_{\text{f}_k}' - B_{\text{f}_{k+1}}' \right)}$$

above $B_{\rm f}' = \max(B_{\rm f}, 0)$; if k not found \Rightarrow no limit; no singularity if either $B_{\rm f} \rightarrow 0$; limit applied **outside** $B_{\rm f} > 0$ **logic**: it is already taken into account in computing h_{MO} ; since h_{bl} is not involved \Rightarrow no possibility of hysteresis

solution # 2: (2005) Eliminate M-O limit altogether.

Ekman depth limitation: $h_{bl} \le h_{Ek} = 0.7u_*/f$ for *stable* boundary layer; should be $h_{bl} = h_{Ek}$ for *neutral* forcing and stratification

Length $\mathcal{L} = u_*/f$ and velocity $\mathcal{U} = u_*$ are natural scaling parameters for neutrally stratified problem

$$i \cdot f\mathbf{u} = \frac{\partial}{\partial z} \left(w_m |z| \frac{\partial \mathbf{u}}{\partial z} \right)$$

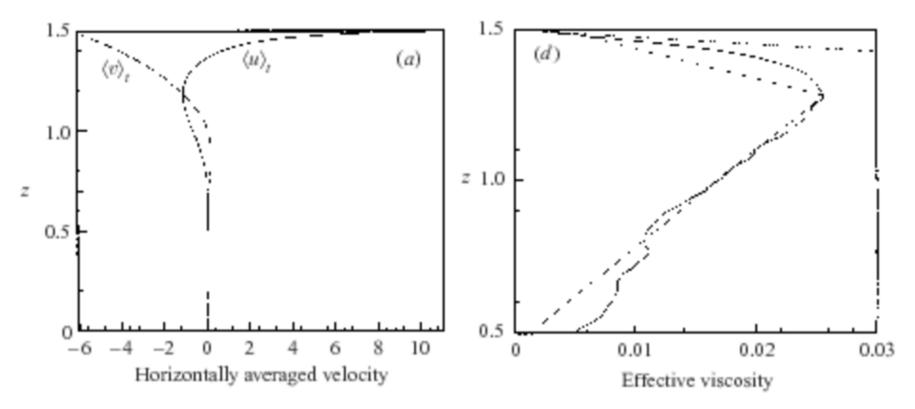
where $\mathbf{u} = u + iv$, and $w_m \equiv \kappa u_*$, and κ is von Karman constant.

- Most vertical mixing schemes are "Coriolis-blind".
- Coriolis effect plays no role in determining h_{bl} via bulk Ri criterion; h_{Ek} -limit is applied *a'posteriori*, and only for stable buoyancy forcing.
- Because of light absorption, stability increases downward resulting in hysteresis if $B_{\rm f}$ (unlimited $h_{\rm bl}$) > 0, but $B_{\rm f}(h_{\rm Ek}) < 0$ which is manifested by $h_{\rm bl}$ oscillations and jumps
- **???** integrate h_{Ek} -limit into KPP BL criterion, balance

$$\int \left|\frac{\partial \mathbf{u}}{\partial z}\right|^2 dz' \qquad \text{vs.} \qquad \int f^2 dz' \qquad ???$$

DNS and LES simulations of Turbulent Ekman Layer:

- Zikanov, O., D. N. Slinn, and M. R. Dhanak, 2003: Large-eddy simulations of the wind-induced turbulent Ekman layer. *J. Fluid. Mech.*, **495**, 343-368.
- Esau, I., 2004: Simulation of Ekman Boundary Layers by Large Eddy Model with Dynamic Mixed Sub-filter Closure. *Envir. Fluid Mech.*, 4, 273-303, DOI: 10.1023/B:EFMC.0000024236.38450.8d
- Coleman G. N., 1999: Similarity statistics from direct numerical simulation of the neutrally stratified PBL. *J. Atmos. Sci.*, **56**, 891-900.
- Coleman G. N., J. H. Ferziger, and P. R. Spalart, 1990: A numerical study of the turbulent Ekman layer. *J. Fluid. Mech.*, **213**, 313-348.
- Parmhed, O., I. Kos, and B.Grisogono, 2005: An improved Ekman layer approximation for smooth eddy diffusivity profiles. *Boundary-Layer Meteor.*, 115(3), 399-407.



DNS simulations from, Zikanov et al 2003.

Modified Ekman problem: $i \cdot f\mathbf{u} = \frac{\partial}{\partial z} \left[w_m \mathcal{L} G\left(\frac{z}{\mathcal{L}}\right) \frac{\partial \mathbf{u}}{\partial z} \right]$

 ${\cal G}$ is KPP non-dimensional shape function

$$G(\sigma) = |\sigma| (1 - \sigma)^{2} + \begin{cases} \frac{(\sigma - \sigma_{0})^{2}}{2\sigma_{0}}, & \sigma < \sigma_{0} \\ 0 & \text{otherwise} \end{cases}$$
$$B.C.: \qquad w_{m} \mathcal{L}G\left(\frac{z}{\mathcal{L}}\right) \frac{\partial \mathbf{u}}{\partial z}\Big|_{z=0} = u_{*}^{2} \mathbf{1}_{\tau} \qquad \Rightarrow \quad \frac{\partial \mathbf{u}}{\partial z}\Big|_{z=0} = \frac{u_{*} \mathbf{1}_{\tau}}{\kappa \mathcal{L}\sigma_{0}/2}$$
$$\mathbf{u} = 0, \text{ if } z < -\mathcal{L}$$

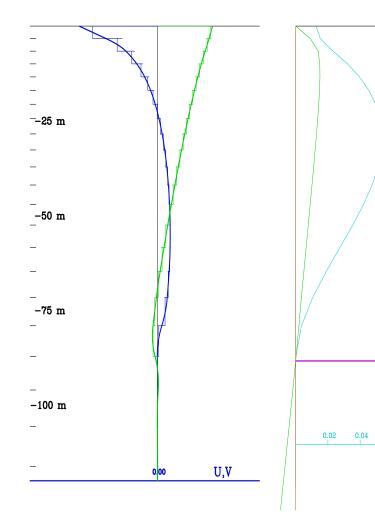
Nondimensionalization: Postulate that depth of generated this way boundary layer is equal to Ekman length and introduce scaling,

$$z = \mathcal{L}\sigma = \sigma \cdot 0.7 u_* / f$$
 $\mathbf{u} = u_* \cdot \tilde{\mathbf{u}},$

hence

$$\frac{\partial}{\partial\sigma} \left(G(\sigma) \frac{\partial \tilde{\mathbf{u}}}{\partial\sigma} \right) = i \cdot \frac{\kappa}{0.7} \tilde{\mathbf{u}}, \qquad \frac{\partial \tilde{\mathbf{u}}}{\partial\sigma} \Big|_{\sigma=0} = \frac{2}{\kappa\sigma_0}, \qquad \tilde{\mathbf{u}} \Big|_{\sigma<-1} = 0$$

everything has been scaled out.



Recognize Coriolis force as *stabilizing* effect (balancing vertical shear production), construct

$$Cr(z) = \int_{z}^{\text{surf}} \mathcal{K}(z') \left\{ \left| \frac{\partial \mathbf{u}}{\partial z} \right|^{2} - C_{\mathsf{E}\mathsf{k}} \cdot f^{2} \right\} dz'$$

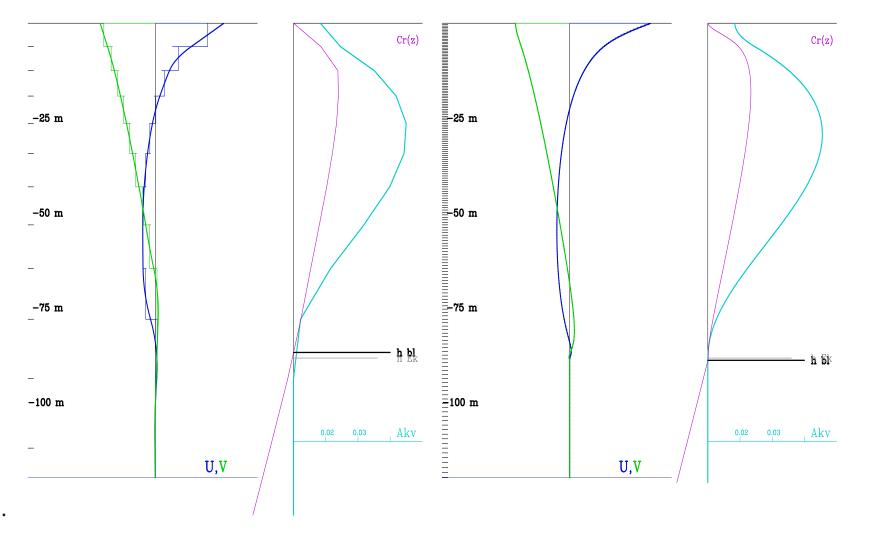
apply the same scaling

· h bl

Akv

$$\widetilde{Cr}(\sigma) = \frac{1}{(0.7)^2} \int_{\sigma}^{0} \mathcal{K}(\sigma) \left\{ \left| \frac{\partial \widetilde{\mathbf{u}}}{\partial \sigma} \right|^2 - C_{\mathsf{Ek}} \right\} d\sigma'$$

and demand that Cr(-1) = 0. $C_{\mathsf{Ek}} = 258$ provided that $\mathcal{K}(\sigma) = |\sigma|/(|\sigma| + \epsilon)$, where $\epsilon = 0.1$



Coarse, N = 32 and fine, N = 512 resolution. h_{Ek} is shown for reference only and does not participate in determining h_{bl} .

- presence of $\mathcal{K}(\sigma)$ is essential for convergence
- overall extremely robust

Numerical Issues

velocities are smooth across $z = -h_{bl}$, but tracers are not

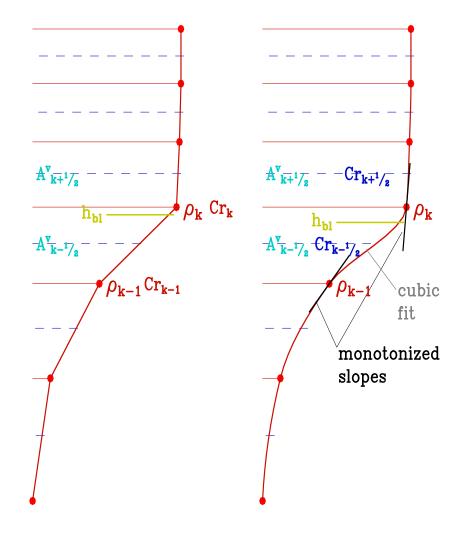
Computation of Ri_b/Cr at vertical ρ vs. *W*-points:

• ρ -placement is natural for finite-difference (trapezoidal-rule) terms in Ri_b/Cr (but not for V_t^2), however

$$4_{k+1/2} \sim \left(z_{k+1/2} - |h_{\mathsf{bl}}|\right)^2$$

near the edge of PBL, hence needs $h_{\rm bl}$ needs accuracy relatively to W-points, while missing ρ -s is more forgiving

- Estimate V_t^2 and Cr(z) at midpoints $z_{k+1/2}$ using monotonized fit for bouyoncy (integrated N^2) to estimate its values and derivates at $z_{k+1/2}$ -interfaces.
- harmonic averaging of adiabatic differences of density field (the same idea as for computing horizontal pressure gradient)
- \Rightarrow unlocking vertical steppiness
- \Rightarrow larger variation of PBL, typically shallower in summer



Monotonized reconstruction to compute $V_{t\ k+1/2}^2$ and $\rho_{k+1/2}$, but **not** to interpolate Cr to find h_{bl} : because of

$$Cr \sim w_s \sqrt{N^2} - N^2 d$$

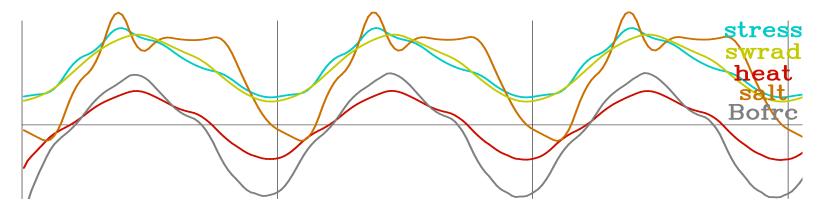
Cr(z) is **not monotonic** near

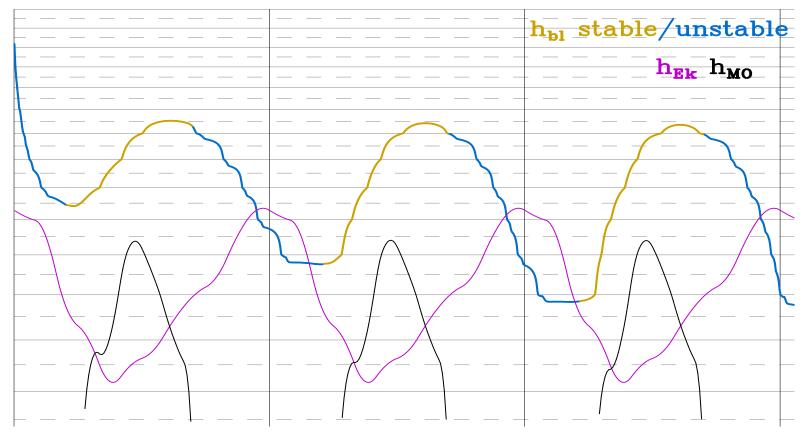
$$z = -h_{\mathsf{bl}}$$

even if $\rho(z)$ and u, v(z) are

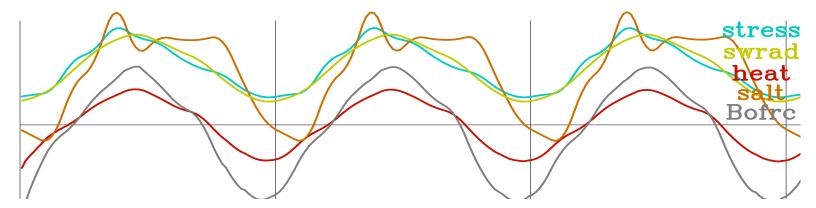
 \Rightarrow quadratic (cubic) interpolation for Cr is dangerous

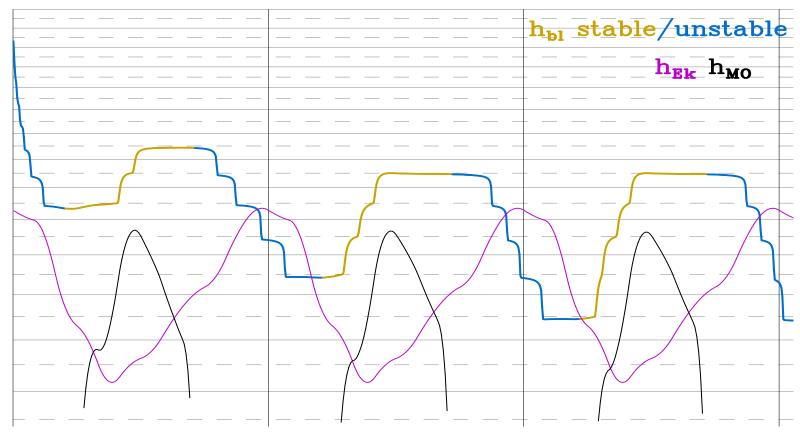
Overall this is by far the largest cause of numerical sensitivities in KPP.





Cr(z) at W-points, N = 40

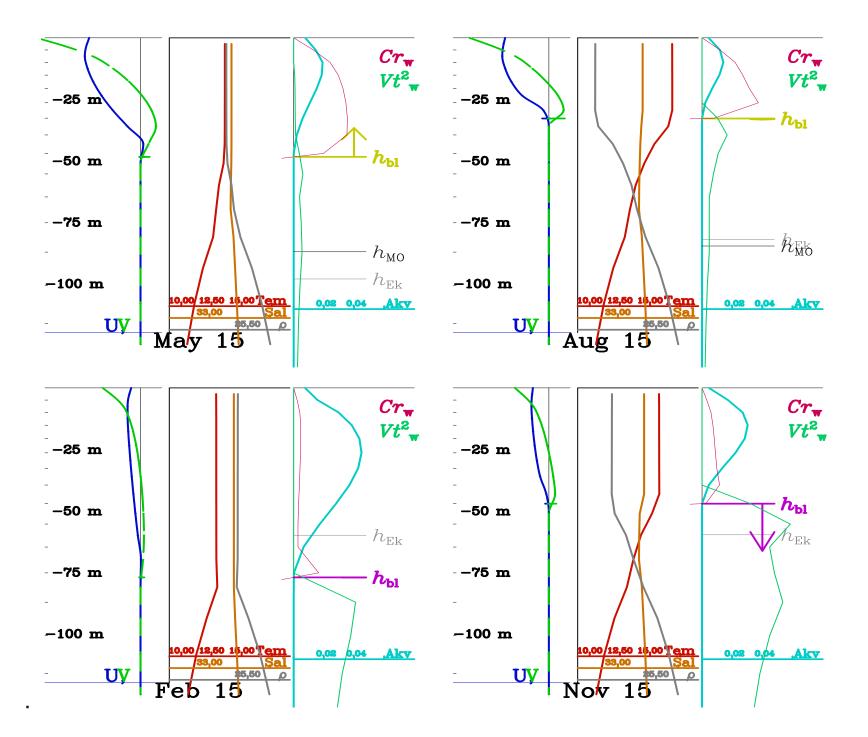


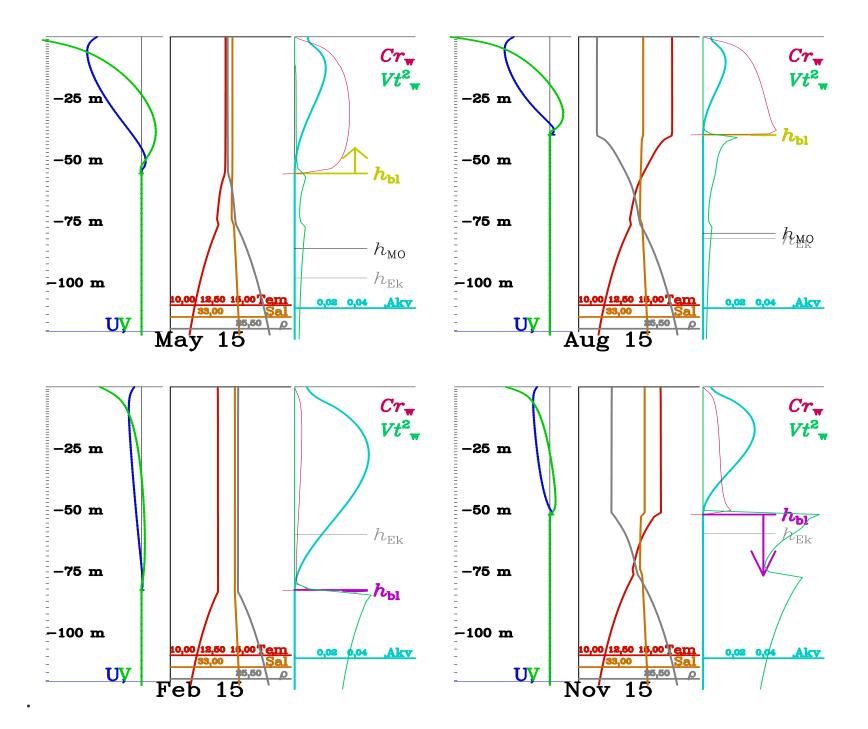


Cr(z) at ρ -points, $N = 40 \Rightarrow$ grid locking

What it all adds up to?

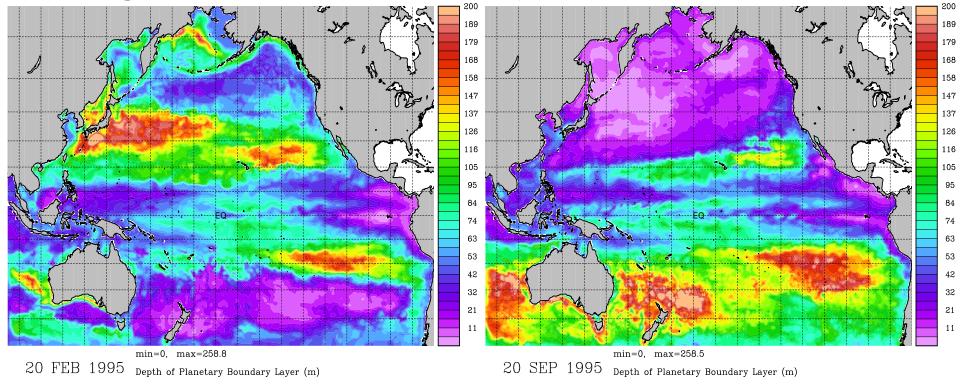
- 1D
- 3D
- comparison with reality



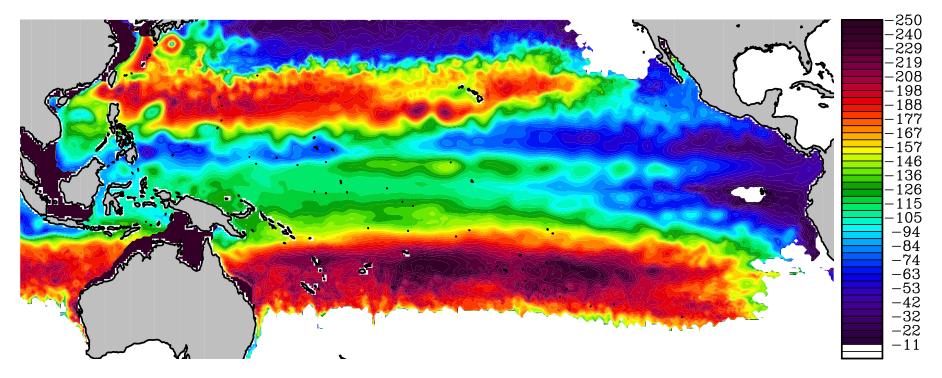


3D Modeling

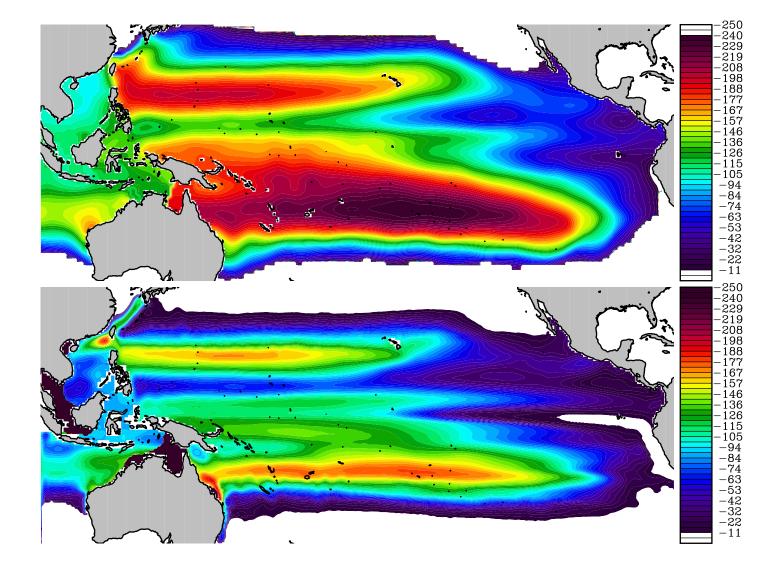
0.45-degree Pacific Model forced by NCEP winds



seasonal variation of $h_{\rm bl}{\rm -field}$



Depth of 20⁰C isoterm, instantaneous snapshot from a recent 2005 simulation

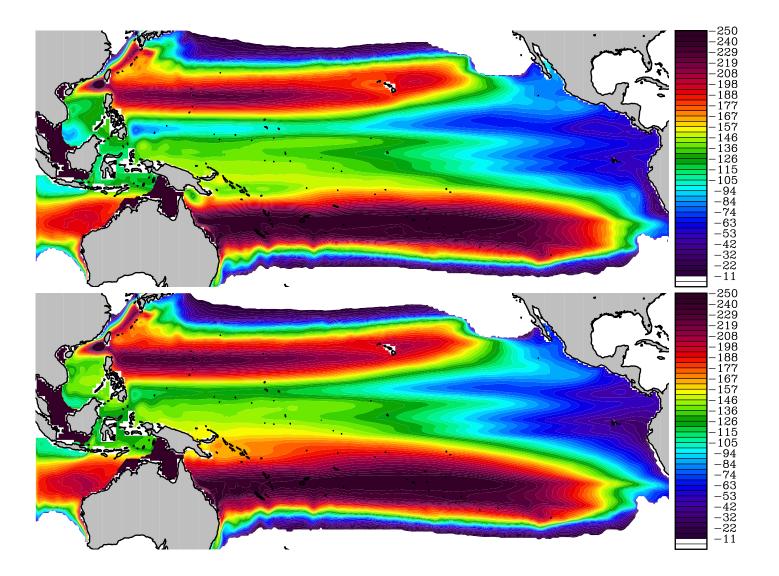


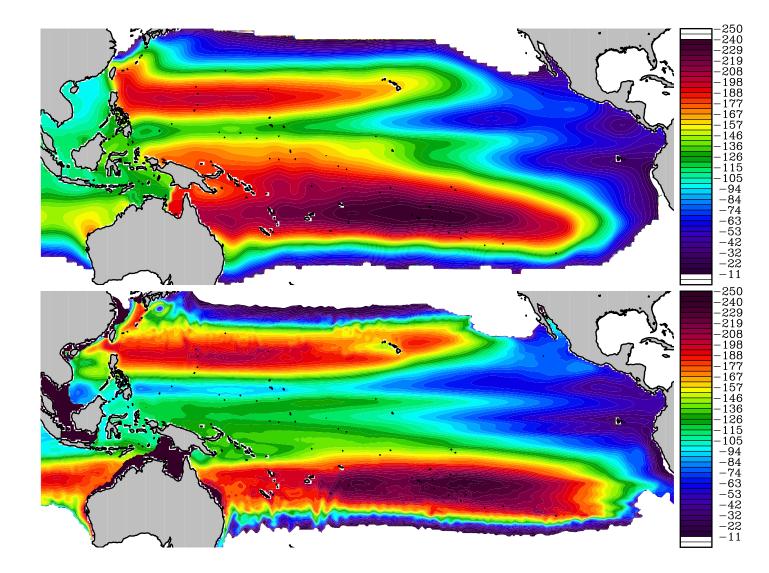
Depth of 20⁰C isoterm, 10-year annual mean

Levitus

VS.

ROMS with early 2003 *baseline* KPP

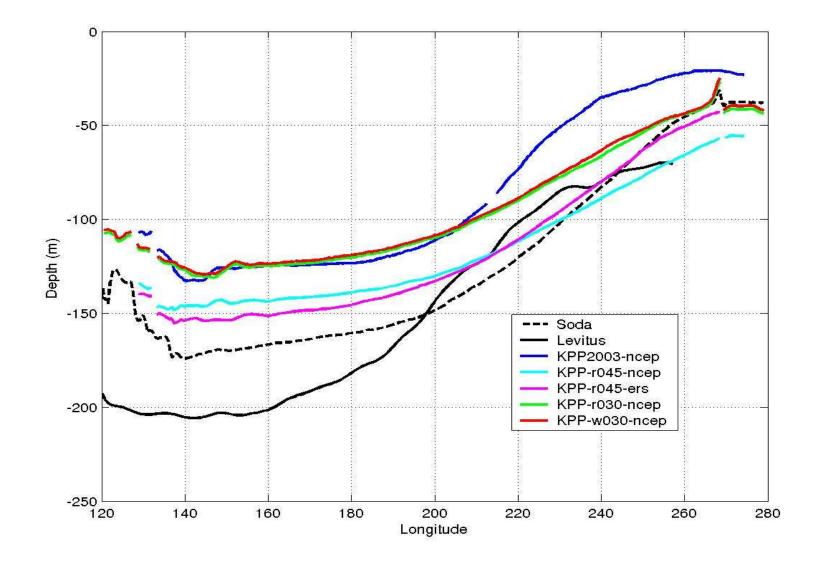


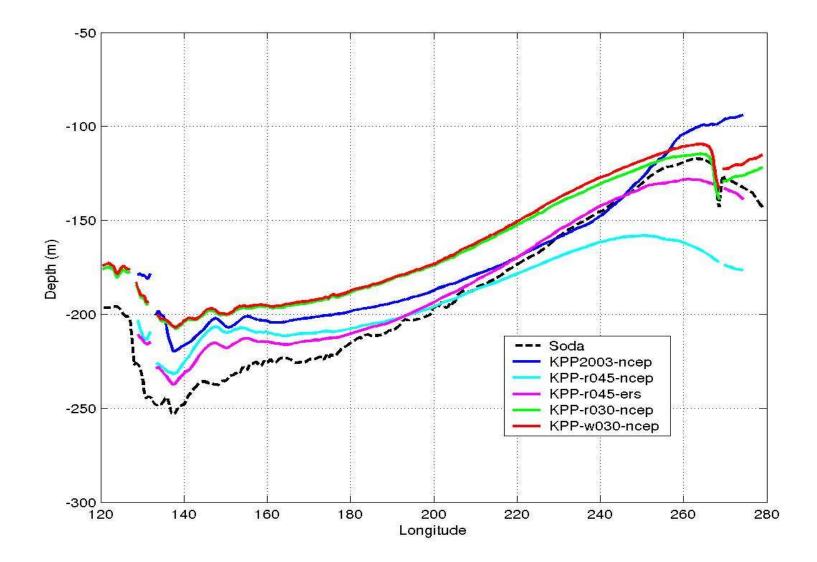


Levitus

VS.

ROMS with 2005 KPP still NCEP





US West Coast Model: an Example of Fine Tuning

US West Coast Model, 15 km resolution forced by COAMPS daily winds

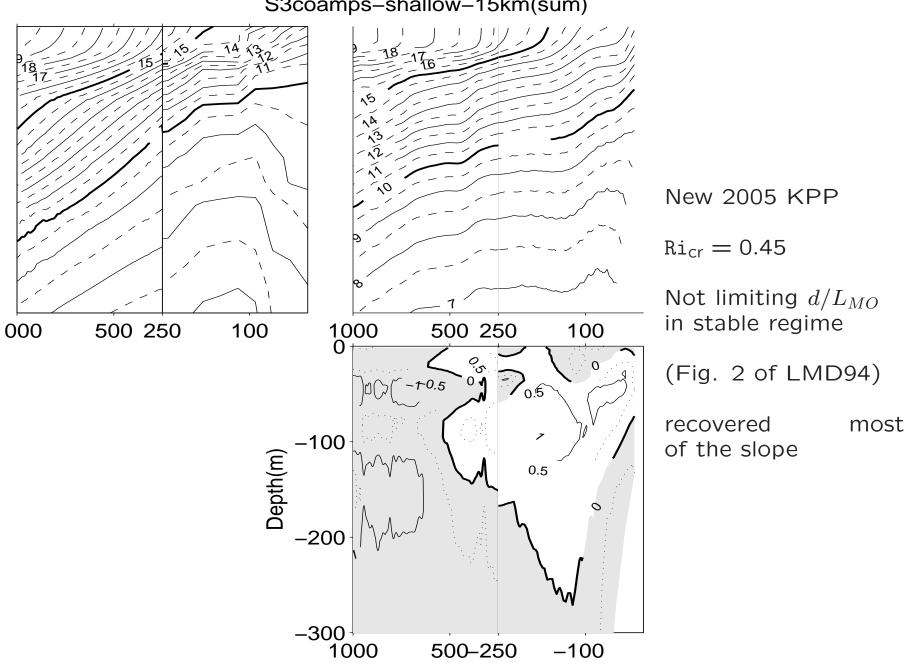
All conditions below are the same, except variations in KPP code.

CalCOFFI (nearshore, $< 250 \, km$), and Levitus (beyond that)

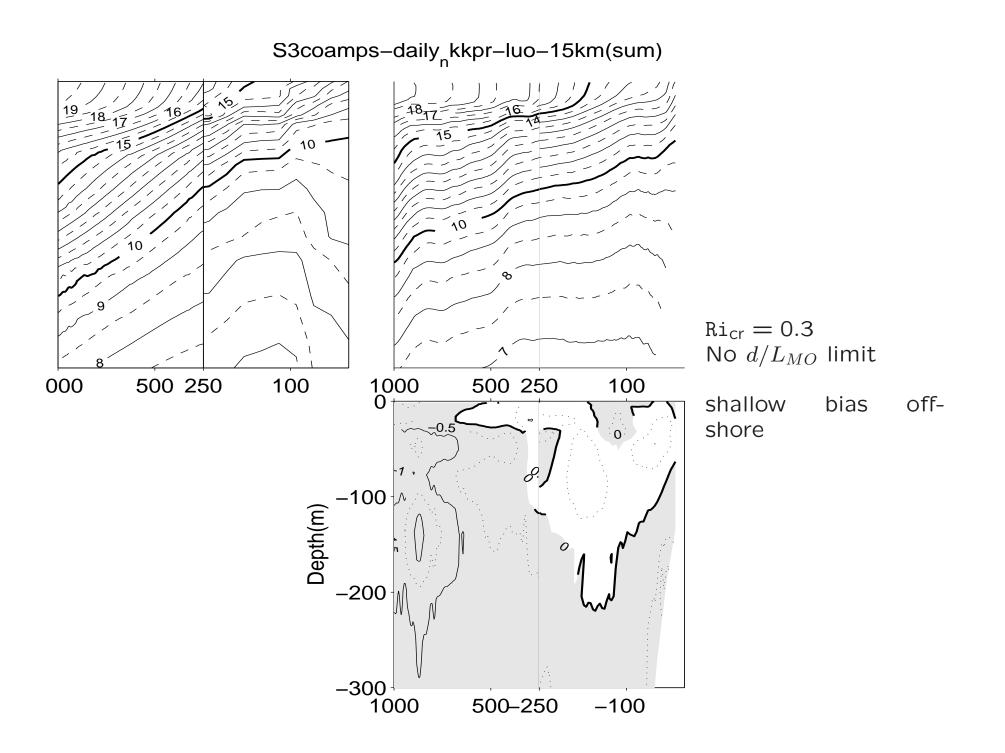
showing only summer because this is the worst among 4 seasons

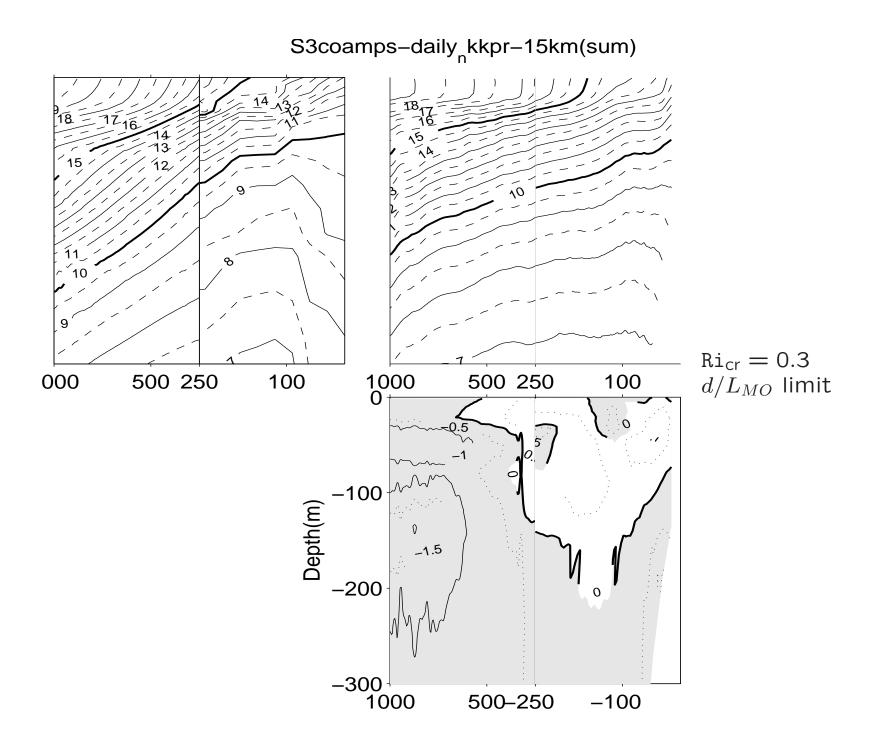
courtesy of Xavier Capet

S3coamps-daily-15km(sum) Early 2005 KPP, $Ri_{cr} = 0.45$, limiting 10 d/L_{MO} for $w_{m,s}$ in stable regime Note slope of 500 250 000 500 250 100 1000 100 $10^O C$ - isoterm 0 overall $1.5^{O}C$ -100 1 Depth(m) cold bias offshore 0.5 and $> 2^O C$ warm bias nearshore -200 -300 1000 500-250 -100



S3coamps-shallow-15km(sum)





Summary

- Accepted most (not all) updates from W. Large and G. Danabasoglu
- integral Cr-based search for h_{bl}
- kernel $\mathcal{K}(\sigma)$ to account for surface sublayer \Rightarrow convergence
- replaced $h_{\mathsf{E}\mathsf{k}}$ limit with new treatment of Ekman boundary layer
- Corrected Monin-Obukhov limitation algorithm.
 Subsequently eliminated it altogether
- Do not limit $\zeta = d/L_{MO}$ in $w_{m,s}$ computation in stable regime
- Changed non-local flux to ensure its continuity at $h_{\rm bl}$
- Surface wave mixing: $A_k \to$ finite limit at $z \to \zeta$
- Significantly reduced resolution drift
- "shallow bias" is now under control
- Changes for free-surface compatibility with free surface of ROMS (fixed blow-ups in shallow regions)
- code rewritten from scratch (yet, again) for efficiency

Lessons learned

- 1D model is very useful for process studies and numerical algorithm verification, but **not for parameter tuning against real-world data**
- Boundary layer depth h_{bl}, is it diagnosed by KPP, is not directly comparable to mixed layer empirically derived from data (cf., Levitus, 0.8^O C-rule, etc). Compare primary field [T,S] field structure instead.
- 3D simulations show significantly less sensitivity to KPP algorithm and parameter settings than 1D, yet the quantitatively the differences are comparable to that of different forcing products