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EXERCISE 8: Forecast Cycle Observation Impacts 
 
 

Computation of the observation impacts for the forecast cycle involves multiple steps, so it is 
important that you follow the instructions below carefully and perform all the steps described in 
the order in which they are presented. Please do not deviate from these instructions. 
 
Description of the problem 
 

 

 
 

Figure 1: A schematic of a typical operational analysis-forecast cycle. During the analysis cycle, an ocean state 
estimate is computed using 4D-Var to assimilate all available observations. The blue curve represents the background 
circulation, xb, for this cycle and is derived from the state estimate from the previous 4D-Var cycle. The number of 
time steps during the analysis cycle is given by NTIMES_ANA. At the end of the analysis cycle there are two possible 
forecasts: FCSTA - the red forecast which is initialized using the state estimate at the end of the analysis cycle, and 
FCSTB - the green forecast which is an extension of the 4D-Var background into the forecast cycle. The number of 
time steps during the forecast cycle is NTIMES_FCT. These two forecasts can be verified against either a new 
analysis or against new observations during the “verification interval.” The red forecast FCSTA has received the 
benefit of the observations assimilated during the analysis interval, while the green forecast FCSTB has not. 
Therefore, the difference in forecast error between FCSTA and FCSTB can be used to quantify the impact of the 
observations assimilated during the analysis cycle on the subsequent forecast skill of FCSTA. 
 
Figure 1 shows a schematic representation of a typical analysis-forecast cycle using ROMS. 
During the analysis cycle a background solution (represented by the blue line) is corrected using 
observations that are available during the analysis window. The analysis state estimate at the end 
of the analysis window is then used as the initial condition for a forecast. The forecast generated 
during the forecast cycle from the 4D-Var analysis is represented by the red curve. The skill of the 
forecast on any day can then be assessed by comparing it to a new analysis that verifies on the 
same forecast day, or by comparing the forecast with new observations that have not yet been 
assimilated into the model.  
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To quantify the impact of the observations on the forecast skill it is necessary to run a second 
forecast which is initialized from the background solution at the end of the analysis cycle. This is 
represented by the green curve in Fig. 1. The difference in forecast skill between the red forecast 
and the green forecast is then due to the observations that were assimilated into the model during 
the analysis cycle. 
 
The methodology will be described first for a standard generic quadratic forecast error metric given 
by: 
 

𝑒 = #𝒙! − 𝒙"&
#𝑪#𝒙! − 𝒙"&     (1) 

 
where 𝒙! denotes the forecast state-vector, 𝒙" denotes the true state-vector, and 𝑪 is a weight 
matrix. For example, if 𝑪 is a diagonal matrix with elements equal to 1 corresponding to all surface 
temperature grid points, and zero elsewhere, then e would represent the sum of the squared errors 
in SST. Forecast error metrics of the form (1) are very common in numerical weather prediction 
and oceanography, so (1) is a good starting point. In practice, however, the true state 𝒙" will never 
be known, so the forecast error (1) is usually computed relative to a verifying analysis 𝒙$, in which 
case: 
 

𝑒 = #𝒙! − 𝒙$&
#𝑪#𝒙! − 𝒙$&     (2) 

 
where 𝒙$ denotes the verifying analysis at the appropriate forecast time. 
 
These days operational weather prediction models generally yield very high-quality analyses, so 
the assumption that 𝒙$ is a reasonable approximation for 𝒙" is probably reasonable. In 
oceanography, however, this is a more questionable assumption, so when possible, it may be more 
prudent to verify a forecast against independent observations, or observations that have not yet 
been assimilated into the model. In this case, (2) would be reformulated as: 
 

𝑒 = #𝒚! − 𝒚&
#𝑪#𝒚! − 𝒚&     (3) 

 
where 𝒚! is the model forecast of the vector of verifying observations 𝒚. 
 
Case 1: Measuring observation impacts using a verifying analysis 
 
In the first example, the 4-day analysis cycle of Exercise 3 is used which spans the 4-day period 
midnight on 3 Jan 2004 to midnight on 7 Jan 2004. The forecast interval spans the 7-day period 
midnight on 7 Jan 2004 to midnight on 14 Jan 2004. We will use (2) as a measure of the forecast 
error and choose 𝑪 so that 𝑒 is the forecast error in the 37ºN transport averaged over forecast day 
7 as measured against a verifying analysis. This is indicated as the “verifying interval” in Fig. 1. 
The verifying analysis 𝒙$ was computed by running a second 4D-Var analysis cycle for the 7-day 
window 7-14 Jan 2004. This has been precomputed for you in these examples. 
 
First, compute the verifying analysis.  It is computed by running a second RBL4DVAR-RPCG, 
but for seven days (Jan 7-14, 2004) by assimilating new observations (../Data/forecast_obs.nc).  
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Go to the directory WC13/RBL4DVAR/VERIFYING_ANALYSIS and run RBL4DVAR-
RPCG initialized from Exercise 3 wc13_dai.nc stored in EX3_RPCG. 
 
Then, to run this example, go to the directory WC13/RBL4DVAR_forecast_impact 
 
Step 1: 
Go next to the subdirectory FCSTAT. In this first step you will run the forecast initialized from 
the 4D-Var analysis computed in Exercise 3 using RBL4DVAR-RPCG (EX3_RPCG). This is the 
red curve in Fig. 1. As in previous exercises, edit the build_roms.csh script as necessary and 
compile the model. Before running the forecast, be sure to run the script job_fcstat.csh. It 
computes the surface fluxes used in FCSTA and FCSTB to guarantee identical surface forcing. 
 
Step 2: 
Go next to the subdirectory FCSTA. In this second step it is necessary to run the forecast in step 
1 again, but this time without BULK_FLUXES and using instead the fluxes computed in 
FCSTAT during the forecast. This step is necessary because the red forecast and green forecast in 
Fig. 1 must be subject to the same surface and lateral boundary conditions. In practice, the 
difference between the forecast skill of FCSTAT and FCSTA will be small. 
 
As in previous exercises, edit the build_roms.csh script as necessary and compile the model. 
Before running the forecast, be sure to run the script job_fcsta.csh. 
 
Step 3: 
Go next to the subdirectory FCSTB. In this first step you will run the forecast initialized from the 
4D-Var background solution at the end of the 4D-Var window. Before doing this, you must first 
run the Matlab script create_ini_fcstb.m to create the forecast initial condition NetCDF file using 
the background solution of RBL4DVAR-RPCG in Exercise 3 (EX3_RPCG). As in step 2, this 
forecast will use the surface fluxes computed during step 1. As in previous exercises, edit the 
build_roms.csh script as necessary and compile the model. Before running the forecast, be sure 
to run the script job_fcstb.csh. 
 
Step 4: 
If we denote the forecast error of the red forecast in Fig. 1 by 𝑒% and the forecast error of green 
forecast by 𝑒& then as discussed in Lecture 5, the forecast error difference 𝛿𝑒 = 𝑒% − 𝑒& is given 
to 3rd-order by: 
 

          𝛿𝑒 = 𝒅#𝑲#𝑴'
#-𝑴&

#𝑪#𝒙& − 𝒙$& +𝑴%
#𝑪(𝒙% − 𝒙$)1   (4) 

 
where 𝑴&

# represents the adjoint model run backwards over the forecast interval and linearized 
about the green forecast solution 𝒙&; 𝑴'

# is the adjoint model run backwards over the 4D-Var 
analysis interval and linearized about 4D-Var background 𝒙'; 𝑴%

# denotes the adjoint model 
linearized about the red forecast solution 𝒙%; 𝑲#is the transpose of the gain matrix; and 𝒅 is the 
innovation vector. Thus, the 3rd-order impact given by (4) requires two integrations of the adjoint 
model: one forced by 𝑪#𝒙& − 𝒙$& and another forced by 𝑪(𝒙% − 𝒙$) and linearized about different 
forecast solutions. The next step is to compute these forcing functions for the adjoint model 
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To create adjoint forcing NetCDF files, go now to the subdirectory WC13/Data and run the Matlab 
script adsen_37N_transport_fcst.m. This will create two files wc13_foi_A_2hours.nc and 
wc13_foi_B_2hours.nc (if using NHIS=4, as discussed in the Readme) which correspond to 
𝑪(𝒙% − 𝒙$) and by 𝑪#𝒙& − 𝒙$& respectively. 
 
Step 5: 
Go back to the subdirectory WC13/RBL4DVAR_forecast_impact and compile the forecast 
observation impact driver using build_roms.csh using the following cpp options: 
 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR_FCT_SENSITIVITY" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DAD_IMPULSE" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_IMPACT" 
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_SPACE" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG" 
 
Before running this application, you must first run the script job_rbl4dvar_fct_impact.csh which 
will copy all of the input files that you created during the previous steps, and those needed from 
Exercise 3, to the current working directory. 
 
Before running this application, take a look at roms_wc13.in and notice that there are two 
additional timestep parameters, NTIMES_ANA and NTIMES_FCT which correspond to the 
number of time steps in the analysis and forecast cycles respectively as shown in Fig. 1. It is these 
parameters that control the time-stepping of ROMS in this case, and the usual parameter NTIMES 
is ignored. The values of NTIMES_ANA and NTIMES_FCT that are currently set in 
roms_wc13.in are the correct ones for this application, so do not change them. Notice also the 
input files FOInameA and FOInameB which correspond to the adjoint forcing functions that 
were created in step 4. 
 
Now run the job using romsM. 
 
Step 6: 
To plot the output from step 5, go to the subdirectory WC13/plotting and run the Matlab script 
plot_rbl4dvar_forecast_impact.m. 
 
Create a new subdirectory, Case1, and save the solution in it for analysis and plotting to avoid 
overwriting solutions when playing with difference CPP options and rerunning and recompiling: 
 

mkdir Case1 
mv Build_roms rbl4dvar.in *.nc log Case1 
cp -p romsM roms_wc13_2hours.in Case1 

 
where log is the ROMS standard output specified. 
  



 5 

Case 2: Measuring observation impacts using independent observations 
 
In this second example, we will use equation (3) as a measure forecast error. For this exercise, 𝑒 
is chosen to be the mean squared error in SST during forecast day 7 over the target area identified 
in Fig. 2. In this case, the 3rd-order approximation for 𝛿𝑒 becomes: 
 

            𝛿𝑒 = 𝒅#𝑲#𝑴'
#-𝑮&#𝑪#𝒚& − 𝒚& + 𝑮%#𝑪(𝒚% − 𝒚)1   (5) 

 
where 𝑮&# and 𝑮%# denote the adjoint model forced at the observation points and linearized about 
green and red forecasts (cf Fig. 1) respectively. Steps 1-3 are identical to Case 1, so there is no 
need to repeat these. However, we now need to create the forcing functions for the adjoint since 
they will be different for this case. 
 

 
 

Figure 2: The central California target area used to define the mean squared SST forecast error metric (green box) 
given by equation (3). 
 
Step 7: 
Go now to the subdirectory WC13/Data and run the Matlab script adsen_SST_fcst.m. This will 
overwrite the two netcdf files wc13_oifA.nc and wc13_oifB.nc which correspond to 𝑪(𝒚% − 𝒚) 
and by 𝑪#𝒚& − 𝒚& respectively. 
 
Step 8: 
Go back to the subdirectory WC13/RBL4DVAR_forecast_impact and compile the forecast 
observation impact driver using build_roms.csh using the following cpp options: 
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  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR_FCT_SENSITIVITY" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DAD_IMPULSE" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_IMPACT" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_SPACE" 
  setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG" 
 
The cpp flag OBS_SPACE informs the model that you are using a forecast error metric that resides 
in observation space instead of state-space. 
 
Before running this observations impact application, you must first run the script 
job_rbl4dvar_fct_impact_obs_space.csh which will copy all of the input files that you created 
during the previous steps, and those needed from Exercise 3, to the current working directory. 
 
Before running this application, take a look at the input file s4dvar.in and take note of the input 
files OIFnameA and OIFnameB which correspond to the adjoint forcing functions created in step 
7. 
 
Now run the job using romsM. 
 
Create a new subdirectory, Case2, and save the solution in it for analysis and plotting to avoid 
overwriting solutions when playing with difference CPP options and rerunning and recompiling: 
 

mkdir Case2 
mv Build_roms rbl4dvar.in *.nc log Case2 
cp -p romsM roms_wc13_2hours.in Case2 

 
where log is the ROMS standard output specified 
 
Step 9: 
To plot the output from step 8, go to the subdirectory WC13/plotting and run the Matlab script 
plot_rbl4dvar_forecast_impact_obs_space.m. 
 


