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Abstract
Classic models of estuarine circulation are reexamined using a three-dimensional,

primitive-equation numerical ocean model. The model is configured using an idealized
estuary/shelf domain with rectangular cross-section, constant vertical mixing, and steady
riverine discharge. Tidal dispersion is neglected, so the analysis does apply to well-mixed
estuaries and lagoons. Estuarine scales for the length of steady-state salt intrusion, verti-
cal stratification and estuarine exchange flow estimated from steady state model results
are found to have the same functional relationships to vertical mixing and riverine dis-
charge as the classic analytic solutions. For example, the stratification is found to be virtu-
ally independent of the strength of vertical mixing. The estuarine structure was controlled
by the interior estuarine circulation, and not by limited exchange at the mouth. Thus, the
numerical solutions were not ’overmixed,’ although the solutions showed a dependence
on fresh water flux functionally similar to the overmixed solution. Estuarine adjustment
timescales are also estimated from the simulations, and are related to the steady state
estuarine scales. Two classes of non-steady solutions are examined: the response of a
step change in riverine discharge and estuarine response to changes in vertical mixing.
Spring/neap tidal variations are examined by modulating the (spatially constant) vertical
mixing with a fortnightly period. Unlike the steady solutions, there is a clear dependence
of stratification on mixing rate in the time-dependent solutions. The simulations involv-
ing changes in riverine discharge show asymmetries between response to increasing and
decreasing river flow that are attributed to quadratic bottom drag.
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1. Introduction.
Over a half-century ago, Pritchard (1952) defined the basic dynamics of the estuarine

circulation and Hansen and Rattray (1965) followed with an analytic solution for the es-
tuarine momentum and salt equations. These solutions formed the basis for an estuarine
classification scheme (Hansen and Rattray, 1966) that is still widely applied. However,
the simplifications required to achieve the Hansen and Rattray solution limit the realism
of the results; for example, the vertical mixing coefficients are assumed to be constant in
time and space, and tidal advection is not considered. Yet, this solution embodies the es-
sential elements of the estuarine exchange flow, and there are still aspects of the solution
that are not fully appreciated.

For example, in estuaries in which the estuarine exchange flow dominates the longi-
tudinal salt flux, the steady solutions of Hansen and Rattray (1965) and Chatwin (1976)
have the peculiar characteristic that neither the shear nor the stratification depends on
the vertical mixing rate. This result contradicts the common observation of spring-neap
variability in estuarine stratification and exchange flow, which is explained by variations
in vertical mixing rate (Hass, 1977; Jay and Smith, 1990; Linden and Simpson, 1988). As
noted by MacCready (1999), this apparent discrepancy between the analytical solution
and observations is due to the time dependent adjustment of the estuary to changes in
forcing, where the timescale of adjustment of the stratification and shear to a change
in mixing is generally much faster than the response of the horizontal salinity gradient.
Thus, the observed spring-neap variations in stratification and exchange flow is a fun-
damentally time-dependent response, inconsistent with the idealized, steady solution for
estuarine exchange flow.

This paper reports on a numerical study of an idealized estuary, focusing on the longi-
tudinal and vertical structure of salinity and velocity as they vary with changes in fresh-
water inflow and vertical mixing rate. The estuarine domain is ’narrow’ in the sense that
it does not include rotation or lateral depth variations that would lateral variations in cir-
culation. The domain is also ’long’ in the sense that the salinity intrusion length is always
controlled by the estuarine dynamics rather than the physical length of the basin. The
The approach follows from the analytic formulations of Pritchard (1952, 1954), Hansen
and Rattray (1965), and Chatwin (1976), in that the geometry is idealized and the mixing
is constant throughout the estuary, but relaxing certain assumptions required by the an-
alytic solutions, such as a linearized momentum balance. The numerical approach also
allows the examination of time-dependent solutions, relevant to changes in freshwater
flow and spring-neap changes in mixing. The modeling approach retains a number of
simplifications relative to real estuaries, such as neglect of lateral variability, constant ver-
tical mixing coefficients, and neglect of tidal processes. Although these simplifications
may limit the quantitative application of the results, they allow an examination of the es-
sential nature of the response of the estuarine circulation to the two main forcing agents:
the freshwater flow and the intensity of vertical mixing.

One of the broad goals of this paper is determine the scaling for the timescale of estu-
arine adjustment. We find, as others have, that it is possible to aproximate the adjustment
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timescales in terms of the steady state length and velocity scales (Kranenburg, 1986; Mac-
Cready, 1999). More subtle issues are also investigated, involving the details of the estuar-
ine dynamics and adjustment processes. For instance, we find that there is an asymmetry
in the response of the estuary to an increase or decrease in fresh water flux due to non-
linear the non-linear effects of bottom drag. In addition, although in some instances the
exchange of an estuary with the ocean may be limited by the exchange flow at the estuary
mouth (e.g., Stommel and Farmer, 1953), in our numerical results, the estuarine exchange
is instead controlled by interior dynamics for the geometry and configuration we have
chosen. However, even in this case the exchange has the same functional dependence on
fresh water flow as the Stommel and Farmer (1953) overmixing solution; the simulated
exchange flow and stratification are consistently about 70% of the theoretical overmixed
limits.

The numerical setup we chose was inspired by estuaries like the Hudson and James,
although direct comparisons between observations in these systems and numerical re-
sults would be inappropriate, due to the many simplifying assumptions used in keeping
with the spirit of an analytical solution. Most notably, tides are not included in the sim-
ulations, which thus eliminates the influence of tidal dispersion. In our simulations, the
vertical structure of the estuary is well resolved, allowing a detailed examination of the
partially mixed regime. MacCready (1999) addressed issues similar to those addressed
in this paper using a two-layer estuary model; the numerical modeling approach is the
fundamental difference between these two studies.

The remainder of the paper is structured as follows. Section 2 reviews previous ana-
lytical solutions for steady and time-dependent estuarine scales. Section 3 describes the
numerical model. Section 4 presents the steady-state results of the numerical model for
constant forcing conditions. Section 5 explores the time-dependent behavior of the sys-
tem related to temporal changes in freshwater flow and mixing rate. Section 6 compares
the numerical solutions to Stommel and Farmer’s (1953) overmixed estuary solution. Sec-
tions 7 and 8 provide further discussion and conclusions.

2. Theory
The numerical results presented in this paper are compared to a variety of previously

derived analytical models for steady state estuarine structure, timescales of estuarine ad-
justment, and control conditions on exchange at the estuary mouth. These theories are
reviewed, respectively, in the following three sections.

a. Steady state scaling
In this paper, we follow the dynamical assumptions of Chatwin (1976): an estuary

with uniform depth in which the longitudinal salt flux is steady and dominated by the
horizontal exchange flow, the along-channel momentum equation is linearized, and cross-
channel variations are ignored. Chatwin’s expressions for estuarine velocity and stratifi-
cation are
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where β is the parameter relating salinity, s, to density, ρ (i.e., ρ = ρ0(1 + βs)), uf is the
depth average velocity, ue is the vertical exchange flow (with a mean of zero, so u =
uf + ue), g is the acceleration of gravity, H is the water depth, ν is the viscosity, Kz is
the vertical diffusivity, and f1, f2, f3 and f4 are non-dimensional O(1) polynomials in
z′ = z/H . The first term in equation 1 is the baroclinic forcing term; the second term is due
to the direct contribution of the river flow. Chatwin’s analysis is based on the assumption
that the river flow is small relative to the estuarine circulation, causing the first term to
dominate. This assumption is valid in most estuarine environments, the exception being
strongly forced salt-wedge regimes. It is also assumed that the horizontal salt gradient is
not dependent on depth, which is also violated in salt wedges.

Equation 2, describing the vertical stratification, also has two terms representing the
contribution of the density-driven shear and that of the river-flow-induced shear to main-
taining the stratification against the influence of vertical mixing. As in the momentum
equation, the second term is small except in strongly forced regimes, which lie outside
the range of Chatwin’s analysis.

The third equation determining the estuarine circulation represents the balance be-
tween the export of salt by the mean flow and the import by the estuarine circulation.
Using (1) and (2) but neglecting the second term in each (that is, assuming the estuarine
exchange is much stronger than the mean flow), Chatwin obtained an expression for this
balance as
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where s0 is the vertically averaged salinity in the middle of the estuary. This equation
indicates the relationship between the horizontal salinity gradient, the freshwater flow
and the vertical mixing rate, given a regime in which the salt flux is dominated by the
estuarine circulation rather than other dispersive processes. One notable aspect of this
solution that is not pursued further in this paper is the very sensitive dependence of
the estuarine salt flux on depth. Chatwin’s solution is very similar to the Hansen and
Rattray (1965) solution in the limit of small longitudinal diffusion. This limit is relevant
to partially mixed estuaries like the Hudson (Abood, 1974; Hunkins, 1981), and it is the
case examined in this paper.

The variables of relevance to this paper are the freshwater flow and the vertical mixing
rate. To simplify the consideration of vertical mixing, we will assume that viscosity is
proportional to diffusivity, assuming the variable κ is proportional to both Kz and ν, for
scaling purposes. Given this simplification, the horizontal salinity gradient is found to
depend on the freshwater flow and mixing rate as
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∂s
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where C1 is a constant obtained from the other terms in 3. Note that the horizontal salin-
ity gradient depends linearly on the vertical mixing rate — stronger mixing results in
a stronger horizontal salinity gradient, i.e., a shorter salinity intrusion. The gradient is
much less sensitive to the freshwater inflow rate, as was pointed out by Hansen and Rat-
tray (1965).

This scaling relation can then be substituted into the dominant terms in equations 1
and 2 to obtain the scaling for estuarine velocity and stratification as

ue = C2u
1/3
f (5)

∂s

∂z
= C3u

2/3
f , (6)

where C2 and C3 are constants that depend on the other terms in equations 1 and 2 and
on the ratio of viscosity to diffusivity, i.e., the turbulent Prandlt number (Pr ≡ ν/Kz).

What is striking about this solution is that neither the estuarine velocity nor the strati-
fication depends on the vertical mixing rate, even though the vertical mixing is a key part
of both the momentum and salt balances. The reason for this is that the variations in mix-
ing influence the magnitude of the horizontal salinity gradient in the correct proportion
so as to cancel out its influence on the momentum and stratification equations. As vertical
mixing becomes stronger, the horizontal estuarine salinity gradient gets stronger, leading
to the same velocity and salinity structure for different mixing rates.

The numerical experiments presented in section 4 provide a test of the theory with
the relaxation of some of the limiting assumptions required for an analytical result. The
scaling is found to apply across a broad range of forcing conditions for the steady-state
analysis.

b. Time-dependent response of an estuary
Kranenburg (1986) derives an analytic scaling for the adjustment timescale of a well-

mixed estuary in which the fresh water flux has suddenly changed,

τu =
1

s0

∫ L

0

A

∣∣∣∣ ∂s

∂Qf

∣∣∣∣dx (7)

where A is the cross-sectional area of the estuary, Qf is the fresh water transport, and
s(x, Qf ) is the steady-state, cross-sectional average salinity given Qf , and s0 is the oceanic
salinity at the estuary mouth. The timescale, τu, may also be estimated by dividing the
ultimate change in freshwater content in the estuary by the change in fresh water flux.

The timescale of adjustment, τu can be compared to the fresh water advective timescale,
τf = L/uf , the time it would take a particle traveling with the fresh water velocity, uf to
traverse an estuary of length L. For a prismatic estuary, like those described by Hansen
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and Rattray (1965), Chatwin (1976), and this study, Kranenburg derives an adjustment
timescale six times faster than the advective timescale. The adjustment timescale is much
faster than the advective timescale due to the small exponent in equation 4. Because of
this, we define a ‘speed-up factor’,

αu =
τf

τu

. (8)

Assuming a constant along-channel salinity gradient, geometric arguments may also be
used to derive αu = 6. Kranenburg suggests, but does not show, that a similar adjustment
timescale is appropriate for changes in vertical mixing.

MacCready (1999) rexamined the time-dependent response of estuaries to both mixing
and changes in fresh water flux using a two-layer numerical model of estuarine circula-
tion. Qualitatively, his results agree with Kranenburg (1986); if the adjustment timescale
of the two layer model is calculated with a estuarine length that exceeds the length of the
salt penetration, the adjustment timescale caused by a change in fresh water flux reduces
to that calculated by Kranenburg (1986). MacCready points out that the tidal mixing case
has two distinct timescales. First, there is the (typically) faster adjustment timescale of
the horizontal exchange flow (∆u∆s) which comes to an equilibrium with the new verti-
cal mixing on approximately the vertical mixing timescale (O(H2

κ
) in the notation of this

paper). Second there is the longer timescale of the adjustment of the longitudinal salt
structure (L in the notation of this paper), which is relevant to the 1-D analysis of Kra-
nenburg. In all of the cases MacCready covered, as well as all the cases in this paper, the
vertical mixing scale was quicker than the estuarine length scale adjustment timescale.

c. Overmixing theory
In the absence of tides, an internal hydraulic control occurs at the estuary mouth. The

control condition is approximated for small density differences as

G2 =
u2

1

g′h1

+
u2

2

g′h2

= Fr2
1 + Fr2

2 = 1 (9)

where Fr1 and Fr2 are the respective upper and lower layer Froude numbers, and G is
the composite Froude number (Armi and Farmer, 1986; Stommel and Farmer, 1953). The
upper layer transport, u1h1, is always greater, since the upper layer carries the river dis-
charge in addition to the exchange flow. For submaximal conditions (h1 < h2), the lower
layer only makes a minor contribution to the composite Froude number. As the exchange
flow increases, the interface depth must increase. Eventually, the interface cannot get any
deeper, because the lower layer starts making an appriciable contribution to the compos-
ite Froude number. The limiting case, at which the exchange flow is maximal, occurs
with the interface somewhat deeper than mid-depth (for a rectangular cross-section). For
larger fresh water flows the interface is much deeper than mid-depth, and for weak fresh
water flows, it is close to mid-depth.
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Using equation 9, and imposing mass and salt balances, (Stommel and Farmer, 1953)
estimate the upper layer thickness for maximal exchange. From this, it is straightforward
to calculate stratification and exchange flow at the mouth. In this paper, numerical solu-
tions are compared to the these values to determine whether the mixing in the estuary,
associated with the exchange flow at the mouth, can become strong enough to reach the
overmixing limit.

Because in Stommel and Farmer’s overmixing theory, the estuarine exchange is con-
trolled at the mouth, as opposed to internal estuarine dynamics, stratification and ex-
change flow are functions of river discharge alone. This dependence is functionally iden-
tical to Chatwin’s (1976) theory, in that the stratification depends on u

2/3
f , exchange flow

on u
1/3
f (see equations 5 and 6). In both solutions, vertical mixing does not affect stratifica-

tion or exchange flow, however, the Chatwin solution does depend on the Prandlt num-
ber. In the limit where exchange is large and the fresh water Froude number (u2

f/gβs2H)
is small, the two solutions are equivalent for Pr = 630

19·32·48 = 0.0216.

3. Numerical model description
The Regional Ocean Modeling System (ROMS, Haidvogel et al., 2000) was configured

for the domain shown in figure 1. ROMS is a free-surface, hydrostatic, primitive equa-
tion ocean model that uses a stretched, terrain-following coordinate in the vertical. At the
‘river’ end of the estuary, a fresh-water transport of Qf is specified. The volume trans-
port introduces water with specified water properties into the domain; the inflowing river
water is specified to have a salinity of zero, and temperature of 4◦C, identical to the back-
ground temperature set throughout the entire domain. The estuary is 1 km across, and
10 m deep. The cross-sectional area of the domain is uniform (104 m2), except for slight
variations in the free surface, so that the volume transport may be converted into a fresh
water velocity, uf .

In the coastal ocean, a weak flow (0.05 m s−1) directed in the sense of Kelvin wave
propagation is set to prevent the formation of a bulge of fresh water at the estuary mouth
(e.g., Yankovsky and Chapman, 1997; Fong, 1998; Nof and Pichevin, 2001), which could
potentially choke the estuarine inflow. This background coastal flow also helps to main-
tain a constant salinity (32 psu) for the coastal oceanic water entering the estuary. Dif-
fusivity and viscosity are set to the same constant value, κ, throughout the domain (i.e.,
a Prandlt number of one), for a direct comparison with the analytical results shown in
the previous section. The coastal ocean is explicitly included in the present domain de-
spite the increased computational expense required for the larger grid because we find
it important that the internal hydraulic control condition (Armi and Farmer, 1986) at the
estuary mouth was unaffected by contamination from boundary conditions.

The discretized domain consists of a grid 59×19×10, with the estuary resolved by 50
grid cells along the channel (∆x ∼ 3 km) and 7 grid cells across the channel (∆y ∼ 142 m).
In the estuary, the vertical resolution is 1 m. The grid is ‘telescoped’ near the river end;
the along channel resolution is gradually increased to ∆x ∼ 42 km, so the channel can be
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longer without increasing the computational expense. The total length of the channel is
450 km, with the 140 km section adjacent to the ocean well resolved.

4. Steady state results
The model was run to steady state for a number of different values of diffusivity/vis-

cosity and riverine discharge, ranging from κ = 5.0×10−5 to 1.0×10−3 m2 s−1, and uf = 0.01
to 0.3 m s−1 (see table 1). Note that tides are not explicitly modeled, as mentioned in sec-
tion 2. However, the influence of time dependent tidal mixing is parameterized through
κ, so that stronger tides are associated with higher mixing.

A diagram showing the steady-state, along-channel estuarine salt structure over this
parameter space is found in figure 2; the parameters for each run are included in table 1.
The variation of length of the estuary with mixing rate is clearly evident. The length
also varies with river flow, but not as dramatically. All of the solutions are stratified,
and the highest stratification is observed for the highest river flow. A hydraulic control
is maintained at the mouth in all cases, with a sharp rise in the isohalines and localized
internal waves at the transition.

Although these runs encompass a broad range of parameter space, and the length of
the estuary varies by almost 2 orders of magnitude, the lower layer velocity (see Ap-
pendix for definition) is remarkably uniform (see table 1), varying from 0.09 m s−1 for
the most weakly forced case to 0.17 m s−1 for the most strongly forced case. This result
indicates the robustness of the estuarine circulation and its relative insensitivity to forcing
variations.

The spatial structure of the salinity and velocity fields for several cases is shown in
figure 3. The case shown in the left panel shows moderate river flow and weak mixing,
resulting in a relatively long salinity intrusion with a classic, partially-mixed structure.
The composite Froude number is almost constant, at a value of close to 0.5, through the
entire estuary until near the mouth, were it increases to slightly over one past the control
point. The case shown in the center panel has the same river flow, but twice as much
mixing. The solution is nearly identical, except that the length has shortened by a factor
of two. The case shown in the right panel indicates how high river flow results in a salt
wedge regime, with most of the salinity gradient confined to the lower layer.

a. Comparison with analytic steady-state results
Figure 4 shows a detailed comparison of analytic functional dependencies versus

those in the numerical model. All of the variables show a qualitative agreement with the
analytic scaling laws, with minor differences in parts of parameter space. The length of
the estuary varies linearly with mixing rate, and both stratification and estuarine velocity
are almost invariant with mixing, as predicted by theory. The length of the estuary shows
the predicted u

−1/3
f behavior, except for high river flows where the length scale varies

more sensitively. The estuary is more like a salt wedge at high fresh water flow rates,
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and the assumptions leading to the length scale dependence on u
−1/3
f are significantly vio-

lated as the river flow velocity, uf , approaches the estuarine velocity. The dependence of
stratification on river flow shows the u

2/3
f relationship consistent with theory, except for

the high river flow cases, again because the scaling assumptions are violated in the salt
wedge regime when ∆s approaches s0 (here 25 psu, the bottom salinity that defines the
point where the stratification is measured). The estuarine velocities show the theoretically
predicted u1/3 dependence throughout parameter space.

Monismith et al. (2002) notes that the estuarine length scale may vary by less than u
1/3
f

if mixing and stratification are coupled; In fact, they found a length scale dependence of
u

1/7
f . In this very idealized study, mixing is specified as constant throughout the estuary,

and has no dependence on stratification. Therefore, the length scale is expected to have a
u

1/3
f dependence.

In addition to confirming the analytic scalings discussed in section 2a, the numeri-
cal results also show that the dominant balances of salt and momentum assumed in the
derivation of those scaling are mostly correct. But again, there are some important points
of deviation. Numerical results show the horizontal salt flux is indeed primarily balanced
by vertical salt diffusion for all cases except those with high fresh water flows. Calcula-
tions of integrated salt flux show that contributions due to vertical salt advection are only
20% to 30% as strong as vertical salt diffusion for all but the high flow cases, where the
contributions are approximately equal. The numerical results also confirm that the dom-
inant balance in the longitudinal momentum equation is between vertical viscosity and
the horizontal pressure gradient.

The theoretical scaling is based on the assumption that the longitudinal salt gradients
are constant with respect to depth at a given point in the estuary. This is clearly not true
for high discharge flows, in which the upper layer is very fresh, with nearly no horizontal
salt gradient. However, the assumption is violated even in parts of parameter space that
have good agreement with the linear scaling, indicating that the solution is not sensitive
to vertical variations in the longitudinal salinity gradient.

5. Time dependent results
The steady-state results discussed in the previous section show some characteristics

inconsistent with observations. For example, the often observed variation of stratification
with vertical mixing (e.g., Hass, 1977; Jay and Smith, 1990) does not occur. In addition,
there is no point in the examined parameter space where the modeled estuary is well-
mixed, whereas there are many such examples in nature. The later discrepancy may be
related to the neglect of horizontal tidal dispersion. However these common features of
estuarine observations are produced when time-dependent mixing is introduced in the
model. Before considering time-dependent mixing, however, it is instructive to consider
the timescale of response to changes in river flow.
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a. Step change in fresh water flux
The response of an estuary to a step change in fresh water forcing is estimated nu-

merically by running simulations, identical to those described in the previous section, to
steady state, and then either increasing or decreasing the fresh water discharge to a new,
constant value. An actual step in the fresh water discharge is not possible because of
spurious waves excited by the discontinuity, so a continuous approximation is used:

Q(t) = 0.5(Uf1 − Uf2) tanh[2(t− t0)] + 0.5(Uf1 + Uf2), (10)

where Uf1 and Uf2 are the respective initial and final fresh water flow speeds, t is the time
(in days) and t0 the time of change in discharge. Using this formulation, the switch in
fresh water discharge occurs over approximately two days, which will be shown to be
shorter than the adjustment timescale for all the cases investigated.

Six cases are evaluated (listed in table 2), three with increasing discharge, three with
decreasing discharge. The adjustment timescale is estimated by using a least-squares fit
to exponential decay of the initial length scale toward the final length scale (figure 5). The
length scale is defined by the average value of ∂s/∂x between 5 and 25 psu.

As expected, longer adjustment times correspond to longer salinity intrusion length.
However, there was a surprisingly large difference in adjustment times depending on
whether the freshwater flow was increasing or decreasing. The longest estuary case ad-
justed to the new flow conditions over two times faster for an increase in flow as com-
pared to a decrease, and the shorter estuaries showed an even bigger asymmetry in re-
sponse. This asymmetry is inconsistent with the linear theory of Kranenburg (1986).

The asymmetric response to forcing seems to be explained by the non-linear effects of
bottom drag. In cases with decreasing flow, the motion of the salt wedge adds construc-
tively to the lower layer flow, resulting in an increase in bottom drag. For increasing fresh
water flux, the estuary shortens, so that the depth average motion of the salt intrusion
is seaward, opposing the landward flow in the lower layer. This causes the net bottom
velocity to be smaller, resulting in a smaller bottom drag. The increased drag increases
the adjustment timescale.

The values of αu (equation 8) were estimated by comparing the estimated adjustment
timescale, τu, derived from the numerical to the advective timescale defined using the av-
erage of the fresh water flow rates and end-member steady state length scales. Although
Kranenburg (1986) predicts a value of αu = 6, the estimates for αu, listed in table 2, were
uniformly smaller than six; the estimated adjustment timescale is always slower than
predicted for a prismatic estuary.

In order for an estuary to adjust at the rate predicted by equation 7, at the instant
of the change in fresh water flow, all of the additional fresh water flux must be remain
within the estuary. This additional fresh water changes the total fresh water content of
the estuary, primarily through changes in the salinity intrusion length scale. This process
continues until it has reached its new steady state. The numerically simulated estuaries
did not convert all of the additional fresh water flux into changes in salinity structure,
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slowing the adjustment timescale proportionally. The reasoning is similar for a decrease
in river discharge, where the negative fresh water anomaly of the decreasing discharge
must correspondingly reduce the fresh water contained in the estuary.

b. Spring/neap modulation of vertical mixing
The basic numerical model configuration was modified such that the (spatially con-

stant) vertical mixing within the estuary is modulated with a fortnightly period, from
κ = 1.0 × 10−4 to 5.0 × 10−4 m2 s−1. Constant values of river discharge with uf = 0.01,
0.05, and 0.10 m s−1 are used in the three consecutive runs described below.

Vertical profiles are shown in figure 6 for three river discharges. In contrast with the
steady-state runs, shown in the previous section, the spring/neap runs show that varying
diffusivity/viscosity can modify the stratification as well as producing well-mixed condi-
tions for low river flow. Changes in stratification are more pronounced for the high-flow
cases, because the maximum stratification is greater for higher flows, but all cases indicate
significant changes.

Cross-sections for the three cases (figure 7) indicate that there are only small variations
in the length of the estuary through the spring-neap cycle for the low discharge case, and
increasing changes in length for larger river flows. This is consistent with the faster re-
sponse of the estuary to changes in forcing at higher flows. The absence of significant
changes in estuarine length during low discharge explains why there are large changes
in stratification on the spring-neap timescale, as indicated in equation 2. Without a com-
mensurate adjustment in the salinity gradient, changes in mixing will result in quadratic
changes in stratification.

Again, the adjustment timescale will be compared to the advective timescale, τ̄f =
L̄/uf , here defined by the mean length scale of the estuary, L̄. The speed-up factor, ακ,
which relates the adjustment timescale of the estuary due to changes in vertical mixing to
the freshwater advective timescale, τ̄f , is defined as

ακ =
τ̄f

τκ

=
1

τκ

L̄

uf

. (11)

The oscillatory forcing frequency, ωf , may be used to estimate the deviation from the
mean length scale, ∆L, for a particular forcing frequency. We assume that the estuary re-
sponse is similar to a damped system with oscillatory forcing, so that ∆L roughly follows

τκ
dL

dt
+ L = A0 sin(ωf t), (12)

Where τκ is the adjustment timescale of the estuary to step changes in vertical mixing, the
damping timescale of the unforced solution. The non-decaying part of solution has the
form

L = L̄ + ∆Lsin(ωf t). (13)
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The amplitude of changes in the estuarine length scale, ∆L, is then

∆L =
1

2

(
L(κmin)− L(κmax)

1 + ωfτκ

)
. (14)

where L(κmin) and L(κmax) are the steady state end members based on the minimum and
maximum values of vertical mixing. A phase lag may also be predicted from equation 12,
which is consistent with model results (2-3 days for the parameters used here).

Figure 8 shows the time dependent changes in estuarine length scale in relation to the
steady state end member length scales for the uf = 0.10 m s−1 and 0.01 m s−1 cases from
figure 6. Bars representing the predicted amplitude in estuarine length scale are shown
for ακ = 2 and 6 for each case, using equation 11 to calculate τκ. The response of the length
scale to mixing is not symmetric, the instantaneous adjustment timescale increases as the
estuary length increases, so it may be misleading to try to estimate ακ, or equivalently τκ

from the numerical results. However, it is clear from figure 8 that for the longer estuary
(uf = 0.10 m s−1) ακ ∼ 2, where for the shorter estuary ακ ∼ 6.

Equation 14 simply states that the estuary must have time to adjust within the timescale
of the forcing. If the forcing time scale is short compared with the adjustment timescale
(ωfτκ � 1), the estuary will respond very little to the forcing and the length scale will
remain near L̄. On the other hand, if the forcing is slower than the adjustment timescales
(ωfτκ � 1), the estuary will be able to keep up with the forcing, being in a nearly steady
state balance, and the estuarine length scale response will span nearly the entire range
from L(κmin) to L(κmax).

6. Relation to Stommel and Farmer’s ‘overmixed’ estuary
Comparisons between the overmixing theory, described in section 2, and the numer-

ical solution show that the modeled estuary is not overmixed. The exchange flow at the
mouth is always submaximal, as the upper layer thickness is never more than half of the
total water depth. Even though the exchange at the mouth is not maximal, the properties
of the estuarine exchange still follow the same parameter dependence as that predicted by
overmixing theory. Stratification and exchange at the mouth predicted by the numerical
model are consistently about 70% of the limits predicted by overmixing theory (shown
in figure 9). Only for very strong fresh water discharge does the normalized numerical
stratification increase slightly, as might be expected for a solution that resembles a salt
wedge.

The numerical solution has the same dependence on mixing and river discharge as
that predicted by overmixing theory. In an overmixed estuary, stratification and exchange
at the estuary mouth depend only on fresh water discharge and estuarine geometry at the
mouth; the intensity of mixing does not affect the amount of mixing. This result is identical
to the steady-state solutions of Hansen and Rattray (1965) and Chatwin (1976), discussed
in section 2, and demonstrated numerically in section 4. These solutions also predict that
the estuarine stratification is independent of the vertical eddy diffusivity/viscosity, κ (see
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figure 4). Thus, in both an estuary with exchange critically controlled at a constriction and
an estuary that has a structure controlled by internal dynamics, steady-state stratification
is not affected by increasing turbulence.

7. Discussion
The idealized regime used in this paper for the setup of the numerical simulations was

chosen because it affords direct comparisons with theoretical results. Although there are
clear advantages to this approach, there are a number of important processes that were
not considered because of the simplifying assumptions made from the outset. Here we
speculate on the consequences of ignoring some of these potentially important processes,
and limitations of the results presented above.

One important limitation is the decoupling of mixing and stratification. The numerical
simulations all used spatially constant mixing. Other simulations, not presented, used
a stratification dependent mixing closure. These simulations tended toward runaway
stratification because the mixing in the pycnocline, where stratification was strong, was
reduced to background levels, i.e., the preset minimum value for mixing in the closure
scheme used3. This run-away stratification is in part a consequence of the simplicity
of the spatial domain; the inclusion of sloping sidewalls or bathymetric variations can
prevent runaway conditions (e.g., MacCready et al., 2002).

In this paper, as in Hansen and Rattray (1965) and Chatwin (1976), vertical mixing is
treated as an independent parameter, proportional to tidal magnitude. Monismith et al.
(2002) show that, in the presence of tides, vertical mixing depends on the river discharge,
and hypothesized that this was the cause of an observed relationship between estuarine
length scale, L ∼ u

−1/7
r , much weaker than that suggested by tidally averaged theory.

8. Conclusions
A numerical model has been used to confirm scaling relations based on Hansen and

Rattray (1965) and Chatwin (1976). These scaling relations are based on several assump-
tions, first that the salt flux is dominated by the estuarine circulation; second that the es-
tuarine circulation is significantly stronger than the river flow, third that the estuary lies
within a rectangular, prismatic channel. These assumptions limit the general application
of the results to real estuaries, however, they allow direct comparison with theory.

Numerical results show that an idealized estuary configuration with constant verti-
cal mixing within the estuary behaves as predicted by classical theories of estuarine cir-
culation. Estuarine scales estimated from the numerical solutions have the same func-

3All modern mixing closures, e.g., both Mellor and Yamada (1974) and KPP Large et al. (1994), use some
minimum mixing value, specified as one of the tunable parameters in the algorithm. This value is supposed
to represent the background, or molecular mixing that is though to occur throughout the domain.
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tional dependencies as the analytical solutions derived by Hansen and Rattray (1965) and
Chatwin (1976),

L ∼ κ−1u
−1/3
f (15)

ue ∼ u
1/3
f (16)

∆s ∼ u
2/3
f . (17)

Vertical stratification, ∆s, predicted by the model is closely related to that predicted for
an overmixed estuary described by Stommel and Farmer (1953), although the numerical
solutions are not overmixed. These results demonstrate that estuarine stratification and
exchange are independent of the magnitude of turbulent mixing, estuarine stratification
and exchange depend only on the estuarine geometry and the magnitude of fresh water
discharge, given the assumptions listed above.

Simulations with time-dependent forcing showed that estuarine timescales of adjust-
ment were between one and six times quicker than the fresh water advective timescale,
L/uf , for both step changes in fresh water discharge and oscillatory changes in the inten-
sity of turbulence. Estuaries with very long adjustment timescales will be respond little
to the quick periodic forcing. In this case, the estuarine length scale will remain near the
mean of the steady state, end-member length scales, the steady state length scale the es-
tuary would have under the minimum and maximum values of vertical mixing. The time
dependent estuary length scale will closely track the steady state length scale when the
adjustment timescale is on the order of the period of the forcing, however the estuary may
still not be in a quasi-steady balance in terms of stratification and estuarine circulation.
Time dependence is an essential consideration if stratification varies with the magnitude
of turbulent mixing.
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Appendix
a. Definition of terms

H — Estuary depth
W — Estuary width
g — Gravitational acceleration constant (9.8 m s−2)
β — Parameter relating salinity to density (ρ = ρ0 + βs)
s0 — Reference salinity
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fn(z) — Order one polynomial in z
uf — Depth average estuarine flow, equal to the average fresh water flow
Qf — Fresh water transport (Qf = HWuf )
ν — Vertical viscosity
Kz — Vertical diffusivity
κ — Generalized vertical mixing (κ = ν = Kz)

u — Along-channel estuarine flow velocity
ue — Estuarine exchange flow (ue = u− uf )
u1,2 — Upper (1) and lower (2) layer velocity.
∆u — Velocity difference between upper and lower layer (∆u = u2 − u1)
s — Salinity
∆s — Salinity difference between upper and lower layer (∆s = s2 − s1)
s1,2 — Upper (1) and lower (2) layer salinity.
L — Estuarine length scale (L ∼ s0/sx)

τf — Advective timescale, (uf/L)
τu — Estuary adjustment timescale in response to changes in freshwater dis-

charge
τκ — Estuary adjustment timescale in response to changes in vertical mixing
αu — Speed-up factor defined by the ratio τu/τf

ακ — Speed-up factor defined by the ratio τκ/τf

b. Calculation of estuarine scales
The scale estimates from the numerical model are also presented numerically in ta-

ble 1, which lists various estuarine characteristics over the parameter space of the numer-
ical model runs. Here the methods used for calculating these scales are described.

Length scale was estimated by first calculating the average longitudinal bottom salin-
ity gradient between 5 and 25 psu. Then, the length scale was calculated as the hypo-
thetical distance between fresh water and oceanic water (32 psu) assuming this spatial
gradient.

Calculations of the stratification are weighted by salt flux, so that, for example, the
‘upper layer’ salinity is given by

s1 =

∫ 0

−h
sudz∫ 0

−h
udz

(18)

where z = −h is the point where u = 0, the interface between the upper and lower lay-
ers. Layer velocity is calculated as the average velocity in each layer. The calculations are
made at the point in the estuary where the bottom salinity was 25 psu, which maintained
a constant position relative to the estuary, although the point moved relative to the to-
pography. In this way, the calculations are done at the same point in the estuary relative
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to the estuary itself, despite order one changes in estuarine length. The vertical stratifi-
cation, ∆s, is calculated as the difference between the upper and lower layers, where the
lower layer is fresher than 25 psu due to the averaging in the layer.
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Table 2: The adjustment timescale, τu, of estuarine response to a shift
in fresh water flux is estimated for the six cases shown using the pa-
rameters on the left (see text for details). Also listed is the speed-up
factor, αu, relating the actual adjustment timescale, τu, to the advec-
tive timescale, τf .

uf1 uf2 κ (×104) L1 L2 τf τu αu

(m s−1) (m s−1) (m2 s−1) (km) (km) (days) (days)
0.1 0.02 1 85 179 76 15.0 1.70
0.1 0.02 2 45 95 41 12.3 1.10
0.1 0.02 5 19 42 18 7.1 0.82

0.02 0.1 1 179 85 15 6.1 4.19
0.02 0.1 2 95 45 8.1 3.5 3.91
0.02 0.1 5 42 19 3.5 1.4 4.28
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Figure 1: The model domain used in the numerical simulations includes a rectangular
channel attached to a shallow coastal ocean.
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Figure 5: Estuarine length scales are shown as a function of time for the parameters used
in table 2. The time axis is shifted such that the fit to exponential decay (to estimate the
timescale of adjustment) begins at t = 0, two days after t0, the midpoint in fresh water
flux change (see equation 10). The slight lag between the step in uf and t = 0 is included
to ensure that the estuary is responding to the fresh water flux, and results in better fits
than using a smaller lag. The fitted functions are shown by dashed lines. The lower panel
shows the two fresh water flux cases as a function of time.
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Figure 6: Spring/neap variations in velocity and stratification are shown for the three
riverine discharge cases also shown in figure 6. The bold lines represent the positions
of the profiles during maximum spring and neap (spring profiles have lower vertical
gradients in all cases). The profiles were taken at the point in the estuary where the mean
bottom salinity was 25 psu.
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Figure 7: Spring/neap cross-sections of salinity are contoured for various values of river-
ine discharge. Snapshots of salinity structure are shown at four times in the spring/neap
cycle, so the progression of time is to the right and is cyclic. The bold line at the top of each
panel represents the range of estuarine lengths estimated by the steady state end mem-
bers calculated from the riverine discharge, uf and the minimum and maximum diffusiv-
ity/viscosity κ, [L(κmin) L(κmax)]. The sliding diamond marker on the bar represents the
instantaneous length scale calculated from the salinity structure at that particular time.
The frames shown are not in phase with the forcing, but are lagged by 2 days so that the
maximum and minimum extent of the estuary is displayed (see figure 8).
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Figure 8: Spring/neap variations in length scale are shown for the low-flow case (100
m3 s−1) with a solid line using the left hand scale, and the high-flow case (1000 m3 s−1)
with a dashed line using the right hand scale. The thick vertical lines represent the length
scale deviations estimated from equation 14. The lower panel shows the phase of the
vertical mixing. Length scales are shortest during high mixing and longest during low
mixing, as expected, with a phase lag of 2-3 days.
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Figure 9: Numerically predicted stratification (upper panel) and exchange flow (lower
panel) are plotted as a function of the fresh water flow speed, ur. Because stratification
smallest for an overmixed estuary, the inverse of the normalized salinity has been plotted.
Numerical values were calculated at the mouth. The reference salinity used for the over-
mixing calculations was the inflowing lower-layer averaged salinity, using the method
described in the Appendix.
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