
10 years of ROMS project:
An overview with emphasis of what
is overlooked, overdue, or missing.

Alexander Shchepetkin, I.G.P.P. UCLA

Los Angeles, CA, October 2007

August 24, 1997 as starting date for ROMS project: We are 10 years old now

Acronym ”ROMS” (a.k.a. Regional Oceanic Modeling System) was introduced by
Dale Haidvogel in October 1998 during Davis Meeting

ROMS evolved (as opposite to intelligent design) with full range of consequences
of this process:

• from Hernan’s SCRUM 3.0 code

• mess, claims, controversy, scrutiny...

• absence of claims, ...sometimes

• inheritance, legacies, sometimes irrational choices, branches

• there is more than one code called ROMS

Linux-like-spirited community with multiple development centres

• exchange of ideas, mutual help network

• voices to unify and make one ”official” code

• go elsewhere and google for janjic +skamarock +”white paper”
www.emc.ncep.noaa.gov/mmb/papers/janjic/response2/response.html

www.mmm.ucar.edu/people/skamarock/black janjic spectra response.pdf

(viewer discretion advised)

ROMS have survived

What is ROMS?
• an ocean modeling code
• by vertical coordinate: ∈ σ-class models, but code stores z(x, y, σ) as an array

⇒ a rather general vertical coordinate code.

• by time stepping engine: free-surface, split-explicit, barotropic-baroclinic mode
coupling algorithm

• always intended for limited-area modeling ⇒ open boundary conditions are in focus

• Boussinesq approximation, although not...
• hydrostatic, although ...
• orthogonal curvilinear grid in horizontal

• built around new time-stepping algorithms for hyperbolic system equations; always
use forward-backward feedback

• higher than second-order accuracy spatial discretization for critical terms: advec-
tion, pressure-gradient...

• grid nesting, RomsTools (more than one branch)
• adjoint
• ground-up design philosophy, focusing on multi-component interplay of remotely-

related features and algorithms: code infrastructure is distinct from modular (like
in MOM/POP) design

• parallel via 2D domain decomposition: threaded/OpenMP, or MPI, or both; mul-
tiple computer architecture support

• code architecture decisions involve optimization in multidimensional space, includ-
ing model physics, numerical algorithms, computational performance and cost

• coupled with sub-models (biology, sediment transport, etc...)

Dealing with consequences: outstanding, overlooked, overdue issues

• Generalized Forward-Backward barotropic mode at least 2.5:1 outperforms the old
LF-AM3 version. It finally made it in AGRIF ROMS ... after 4.5 years. Still to
make it into Rutgers ROMS. Barotropic mode consumes 25%...40% of CPU time
for typical ROMS configuration. The longest delay ever.

• Laurent Debreu reported a source of mode-splitting error due to crude startup
algorithm of barotropic mode. The subsequent changes lead to a more accurate
and robust splitting. Tide simulation without reverting to a more dissipative filter
for fast-time-averaging. Not yet in Rutgers code.

• Pressure gradient scheme is only implemented only 50% in Rutgers ROMS: the
monotonicity of interpolated stratification is not guaranteed because adiabatic
density differencing is not used. There is also related update about compressibility
effect in seawater EOS presented in this talk.

• Compiler issues with advanced features of F90: CPU performance of older version
of Rutgers ROMS 1.8/1.9 is as much as 1.4 times better than of the later 2.2 and
3.0 versions in OpenMP mode (1.8/1.9 were not MPI-capable codes), if using Intel
compiler, especially on an Intel CPU (other compilers produce less contrast, but
they result in slower executables as well. This is a known/noticed problem and it
does not go away by itself ”as compilers improve”. The whole community accepted
significant performance hit, but only handful of people complained. There is
also pressure from ESMF to mandate code conventions some of which disregard
performance

• OpenMP Standard specification has been changed since 2001. Compilers follow
⇒ code which worked correctly for several years previously may not work correctly.

• MPI code allows OpenMP threads within MPI subdomains at last

Selected topics:

EOS: Compressibility effects and Boussinesq approximation

Flather Boundary Conditions: an update

Open MP Standard

Linux Cluster computing: caveats and experiences

EOS Compressibility effects in Boussinesq model

Boussinesq approximation: rewrite equations to make density be multiplier,

∂t (ρu) + ... = ∇P + ... P = g

ζ
∫

z

ρ dz′ + ... [NH-terms, if any]

and replace ρ → ρ0 everywhere, except where multiplied by g.

• relies on smallness of variations of density ∼ 5%

• Boussinesq approximation is often associated with replacing in situ pressure inside EOS with
bulk pressure P = gρ0|z|, which is basically depth

• assumes that water is dynamically incompressible ⇒ no acoustic waves; density appears only in
context of buoyancy anomaly, −gρ′/ρ0; simplifies a lot especially in non-hydrostatic case;

• nevertheless realistic compressible UNESCO-type EOS is used in ocean modeling because it is
physically important to capture thermobaric effect

• theoreticians love to write papers about: McDougall & Garret, 1992; Jackett & McDougall,
1997; Dewar, Hsueh, McDougall, & Yuan, 1998; Lu,2000; Greatbatch, 2001; de Szoeke &
Samelson, 2002; McDougall, Greatbatch, & Lu., 2002; Greatbatch & McDougall, 2003; Losch,
Adcroft, & Campin, 2004; and counting...

• is believed to admit ∼ 5% errors in velocities, transport

• it is a big deal, look at internal inconsistencies...

• no, it is not a big deal, because of isomorphism between Boussinesq equations and non-
Boussinesq in pressure coordinates: one can simply reinterpret Boussinesq model results as
non-Boussinesq (hydrostatic version for both)

An example of internal inconsistency of Boussinesq model with compressible EOS:
Assuming spatially uniform Θ, S = const, perturbed free surface, and hydrostatic
balance,

ρ = ρ(P) = ρ
∣

∣

∣

P=0
+ P/c2, ∂zP = −gρ, along with P

∣

∣

∣

z=ζ
= 0

which remaps P ↔ z as

ρ = ρ
∣

∣

∣

z=ζ
exp

{

g
ζ − z

c2

}

≈ ρ
∣

∣

∣

z=ζ
+ gρ0

ζ − z

c2

[c is speed of sound, 1/c2 = ∂ρ/∂P , and for simplicity we assume smallness g|z|/c2 ≪ 1 which is not

principal] The acceleration created PGF due to perturbation in free surface is then

− 1

ρ0

∇xP = −
g ρ|z=ζ

ρ0

· ∇x

ζ
∫

z

exp

{

g
ζ − z′

c2

}

dz′ ≈ −g

[

ρ|z=ζ

ρ0

+
g(ζ − z)

c2

]

∇xζ

increases with depth.

non-Boussinesq answer: acceleration is −g∇xζ independent from depth; this is
an exact result, even if g|z|/c2 is not small, and even in the case when ρ = ρ(P)
is nonlinear. Simply put, in comparison with constant-density case both ρ and ∇xP
are multiplied by

r(z) = exp

{

g
ζ − z

c2

}

which cancels out when computing acceleration −(1/ρ)∇xP

Boussinesq approximation retains r(z) in one place but neglects it in the

other, resulting in spurious vertical shear in PGF acceleration.

How does this affect ROMS?

• in computation of pressure gradient force: if EOS of JM95 (UNESCO-type) is
used, the resultant r.h.s. for 3D momenta fully contains spurious vertical shear

• when computing

ρ =
1

D

ζ
∫

−h

ρ dz and ρ∗ =
2

D2

ζ
∫

−h







ζ
∫

z

ρ dz′







dz , D = h + ζ

for the use in barotropic-mode pressure gradient, the resultant ρ and ρ∗ are related
as it would be for a stratified water column, when in fact, physically there is no
stratification [e.g., ρ = ρ(P) case];

• EOS is computed in slow time, but contains traces of free surface signal, which is
kept unchanged during fast-time stepping ⇒ contribution to mode splitting error.
The contribution is very small, but because free-surface field available to EOS
is taken from previous time step, it results in effectively Forward Euler stepping
for these terms. This kind of instability was first observed in POM and reported
by Robinson, Padman, & Levine, 2001: A correction to the baroclinic pressure
gradient term in the Princeton ocean model. J. Atmos. Ocean. Technol., 18, pp.
1068-1075 [although they did not classify it as mode-splitting instability]. Their proposed
remedy is to suppress compressibility effects in EOS altogether.

• Griffies, 2002, advocates to abandon Boussinesq approximation, incl. the use of in situ pressure
inside EOS. Although this eliminates spurious shear, it does not fix mode splitting (one must
somehow exclude influence of free surface in EOS, which contradicts the idea of in situ pressure;
or redesign barotropic mode; implicit stepping for free-surface is immune to this because it is too
dissipative). Something remains to be done about adiabatic differencing (discussed below)

Three are 4 reasons why a Boussinesq ocean model needs EOS:

• computation of pressure gradient force;

• evaluation of stability of stratification as well as stability of exter-

nal thermodynamic forcing (buoyancy flux) needed for mixing and

planetary boundary layer parameterization;

• computation of slopes of neutral surfaces need by horizontal (along

isopycnals) diffusion

• computing of ρ (vertically averaged density) and ρ∗ (normalized

vertically averaged pressure),which participate in barotropic–baroclinic

mode splitting.

the role of EOS is to translate gradients of T, S into gradients of

density

in situ density is not needed

PGF in sigma-coordinates needs

Jx,s(ρ, z) = −α · Jx,s(Θ, z) + β · Jx,s(S, z)

where α = α(Θ, S, P) = − ∂ρ

∂Θ

∣

∣

∣

∣

S,P=const

β = β(Θ, S, P) =
∂ρ

∂S

∣

∣

∣

∣

Θ,P=const

alternatively, if

ρ = ρ(0)
1 + ρ′

1(Θ, S) +

n
∑

m=1

(

q(0)
m + q′m(Θ, S)

)

· |z|m

then ρ(0)
1 , q(0)

m -terms are all out:

Jx,s(ρ, z) = Jx,s(ρ
′
1, z) +

n
∑

m=1

Jx,s(q
′
m, z) · |z|m

adiabatic differencing

∆ρ
′(ad)
i+1

2
,j,k

= ρ′
1i+1,j,k − ρ′

1i,j,k +

n
∑

m=1

(

q′mi+1,j,k − q′mi,j,k

)

∣

∣

∣

∣

zi+1,j,k + zi,j,k

2

∣

∣

∣

∣

m

the two adjacent adiabatic differences are averaged using harmonic mean, and (if
needed) the compressible part is computed and added separately,

di,j,k ≡ ∂ρ

∂ξ

∣

∣

∣

∣

i,j,k

=
1

∆ξ
·
2∆ρ′(ad)

i+1

2
,j,k

· ∆ρ′(ad)
i−1

2
,j,k

∆ρ′(ad)
i+1

2
,j,k

+ ∆ρ′(ad)
i−1

2
,j,k

+
(

q′1i,j,k + 2q′2i,j,kzi,j,k +
) ∂z

∂ξ

∣

∣

∣

∣

i,j,k

,

the above guarantees monotonic stratification of cubic polynomial interpolant

for density critical for PGF static stability; simple differencing does not

Boussinesq approximation and stiffening of EOS

Dukowicz, 2001 idea [also Sun, Bleck, Rooth, Dukowicz, Chassignet, & Killworth, 1999]:
most variation of in situ density occur due to changes in pressure, and a much
smaller fraction due to changes in Θ, S, hence

ρ = r(P) · ρ•(Θ, S, P)

where r(P) is a universal function (does not depend on local Θ, S) which can be
chosen to ”absorb” most of variation of density due to pressure.

• ρ•(Θ, S, P) fully retains thermobaric and cabbeling effects.

• variation of Θ and S decrease with depth (survey of Levitus data)

• allows a self-consistent (⇒ more accurate) remapping r(P) → r(z) and ρ•(Θ, S, P) → ρ•(Θ, S, z)
as an alternative to bulk pressure P = gρ0|z| inside EOS

• substitution of r(P) ·ρ•(Θ, S, P) into non-Boussinesq equations shows tendency of r(P) to cancel
out (exactly or approximately) in all terms which depend on density: e.g., it removes spurious
barotropic shear; r(z) commutes with density Jacobian operator,

Jx,s(r(z) · ρ•, z) = r(z) · Jx,s(ρ
•, z) ,

and BVF computed using a Boussinesq-like rule

N2 = − q

ρ•
0

[

∂ρ•

∂Θ

∣

∣

∣

S,z=const

∂Θ

∂z
+

∂ρ•

∂S

∣

∣

∣

Θ,z=const

∂S

∂z

]

is closer to its non-Boussinesq counterpart than in the case of standard Boussinesq approxima-
tion [ρ•

0 is a constant similar to Boussinesq reference density, but representing ρ• instead of in

situ density]

Practical ”stiffened” EOS for ROMS

From EOS of Jackett & McDougall, 1995,

ρ(Θ, S, z) =
ρ1(Θ, S)

1 − 0.1 · z /[K00 + K0(Θ, S) + K1(Θ, S) · z + K2(T, S) · z2]

chose

r(z) =
1

1 − 0.1z/Kref(z)
with Kref(z) = K00 + Kref

0 + Kref
1 z + Kref

2 z2

and Kref
0 = K0

(

Θref , Sref
)

, Kref
1 = K1

(

Θref , Sref
)

, Kref
2 = K2

(

Θref , Sref
)

.

Select representative abyssal values Θref = 3.5, S = 34.5, then Kref
0 = 2924.921,

Kref
1 = 0.34846939, Kref

2 = 0.145612 × 10−5, and ρ1

(

Θref , Sref
)

= 1027.43879.

The ”stiffened” EOS becomes

ρ•′(Θ, S, z) = [ρ•
0 + ρ′

1(Θ, S)] · 1 − 0.1z/Kref(z)

1 − 0.1z/K(Θ, S, z)
− ρ•

0

ρ•′ is perturbation of ρ• relatively to a constant reference value ρ•
0, for which ρ•

0 =

ρ1

(

Θref, Sref
)

is the natural choice. Cancellation of large terms yields

ρ•′(Θ, S, z) = ρ′
1(Θ, S) + 0.1z · ρ•

0 + ρ′
1(Θ, S)

K00 + Kref
0 + Kref

1 z + Kref
2 z2

×

×
Kref

0 − K0(Θ, S) +
(

Kref
1 − K1(Θ, S)

)

· z +
(

Kref
2 − K2(Θ, S)

)

· z2

K00 + K0(Θ, S) + (K1(Θ, S) − 0.1) z + K2(Θ, S)z2

= ρ′
1(Θ, S) + q̂′(Θ, S, z) · z

so far without any approximation.

Property ρ•′ (Θref, Sref , z
)

≡ 0, and, similarly, q̂′
(

Θref , Sref, z
)

≡ 0 regardless of z
ensures that variation of ρ•′ is expected to be small, and decrease with depth
because variation of Θ and S also decrease.

Already close to the desired form, but q̂′(Θ, S, z) still explicitly depends on z, although
the dependency is weak in comparison with the original JM95. Taylor expansion for
powers of z yields

ρ•′(Θ, S, z) = ρ′
1(Θ, S) + q′1(Θ, S) · z

where

q′1(Θ, S) = 0.1 ·
[

ρ0 + ρ′
1(Θ, S)

]

· Kref
0 − K0(Θ, S)

[

(K00 + K0(Θ, S)) ·
(

K00 + Kref
0

)]

with q′1 does not depend on z.

This involves an approximation, and discards all coefficients associated with K1 and
K2 terms (hence 14 out of 26 in the original JM95 bulk secant modulus). Naturally,
this raises concern about the accuracy.

The final practical version is,

ρ•′(Θ, S, z) = ρ′
1(Θ, S) + q′1(Θ, S) · z (1 − γz)

with γ = 1.72× 10−5 for Θref and Sref values selected above (γ is just a constant).

Practical ”stiffened” EOS: Continued .

-20

-20

-10

-10

0
0

-20

-20

-10

-10

0
0

-20

-20

-10

-10

0
0

-20

-20

-10

-10

0

.. ..

0

0

.1

.1

.2

.2

.3
.3

0 .1

.1

.2

.2

.3

.3

.1
.1

.2

.2

.3

.3

.2

.2

.2

.3

.3

.3

.. ..

.7
50

.7
50

.7
75

.775

.8
00

.800

.7
50

.750

.7
75

.775

.7
25

.725

.7
50

.750

.7
75

.7
00

.725

.7
25

.725

Practical ”stiffened” EOS: Assessing accuracy .

-.0010

-.0005

0
0

00

-.0075

-.0075

-.0050-.0050

-.0025
-.0025

00
0

-.050

-.025

-.0
25

00
0

.. ..

-.0030-.0030

-.0020
-.0020

-.0010

-.0010

0

-.020
-.020

-.015

-.015

-.0
10

-.010

-.0
05

-.005

0

-.0
75

-.075

-.0
50

-.0
50

-.0
25

0

.. ..

-.0010

-.0005

0

0

00

.0
00

5

.0
00

5

.0
01

0

-.
00

50
0

-.00250

-.00250

0

0

0 .00250

-.0250

-.0
25

0

0

0
0

.0250

Summary of EOS

• Follows Dukowicz, 2001, except in choosing constant Θ, S reference to construct
r(P) → r(z), rather than globally averaged profile from Levitus. This is to facilitate
adiabatic differencing critical for PGF in ROMS (z-coordinate models do not care)

• If Boussinesq approximation is applied, it must be applied to EOS as well

• in comparison with 2003 PGF study allows to align zero-error point on Θ, S plane
with the desired location. Approximately one order of magnitude more accurate.

• fully retains thermobaric and cabbeling effects

• adiabatic derivatives normalized by stiffened reference density, e.g.,

N2 = − q

ρ•
0

[

∂ρ•

∂Θ

∣

∣

∣

∣

S,z=const

∂Θ

∂z
+

∂ρ•

∂S

∣

∣

∣

∣

Θ,z=const

∂S

∂z

]

are close to that from non-Boussinesq model

• removes most (up to ∼ 90%) of Boussinesq approximation errors; replaces ρ0 =
const reference with ρ•

0r(z), which closer to reality

• the reason why it works well is because r(z) in integrable, merely because r ∼
egz/c2 ∼ 1 + gz/c2, with gz/c2 << 1 so both density and pressure are multiplied by
approximately the same factor (exactly the same in barotropic case), resulting in
cancellation r(z) (approx. or exact), and preserving semantics of Boussinesq code

• Eliminates mode splitting error in computing ρ∗, ρ without increase of code com-
plexity (basically without any change in parts computing ρ∗, ρ): now these two are
purely baroclinic (no spurious stratification), and therefore assumption that they
are kept constant during fast-time stepping is fully justified

Flather Boundary Conditions

Basic idea: rewrite
∂u

∂t
= −g

∂ζ

∂x

∂ζ

∂t
= −h

∂u

∂x

in terms of characteristic variables (Riemann invariants)

R± = u ±
√

g

h
· ζ ⇒







∂tR+ + c∂xR+ = 0

∂tR− − c∂xR− = 0
c =

√

gh

R−, R+
0 move to left and right independently from each other, also R− = R−

0 (x+ct) =

const and R+
0 = R+

0 (x − ct) = const along their characteristics x ± ct = const.

boundary conditions are self-obvious for R−, R+
0 :

left side

R+ = u(ext) +

√

g

h
· ζ(ext)

R− free radiation b.c.

right side

R+ free radiation b.c.

R− = u(ext) −
√

g

h
· ζ(ext)

then transform R+,R− back to the original variables u, ζ

What is missing above is the fact that on a staggered grid u, ζ are not
co-located, which obscures u, ζ ↔ R+,R− translation: ⇒ ad hoc interpolations
⇒, reflections, instability, restriction on permissible time step; excessive tidal ampli-
tudes. ...Riemann solvers are known for 40 years, they use non-staggered grids.

Approach:

• radiate out (next slide for details) u, ζ independently from the other to a common
location at new time step,

→ u∗ = ũn+1
j+1/2

→ ζ∗ = ζ̃n+1
j+1/2

• construct outgoing characteristic variable, R+ or R−, using u∗, ζ∗:
say, on the right-side boundary, assembly

R+ = u∗ +

√

g

h
· ζ∗

prescribe

R− =
(

R−)(ext)
= u(ext) −

√

g

h
· ζ(ext)

• translate back

un+1
j+1/2

=
R+ + R−

2
=

u∗ + u(ext)

2
+

√

g

h
· ζ∗ − ζ(ext)

2

This is different from the original Flather condition u = u(ext) +
√

g/h
(

ζ∗ − ζ(ext)
)

Overall follows Blayo and Debreu, 2004, except the ”radiate out” step

R− and R− never appear explicitly in the code

boundary conditions for ζ (i.e., setting ζ at ghost points half-grid outside the boundary row of u-

points) are needed only by the radiation scheme, but are not needed outside the Flather B.C. The

are therefore auxiliary. Use explicit radiation scheme.

Flather algorithm for staggered grid

explicit radiation scheme for u,

u∗ = (1 − c)un
j+1/2 + cun

j−1/2

.

explicit-implicit switch for ζ:

ζ∗ = ζ̃n+1
j+1/2

= ζn
j

(

1

2
+ c

)

+ ζn
j+1

(

1

2
− c

)

if c < 1/2; and

ζ∗ =
ζn
j + ζn+1

j (2c − 1)

2c

if c > 1/2; relies on auxiliary B.C.

ζn+1
j = (1 − c)ζn

j+1 + cζn
j

unstable, hole around c ≈ 1/2
Avoid single-point value ζn

j−1/2
if c = 1/2

ζ∗ = ζn
j

(

1

2
+ c

)

+ ζn
j+1

(

1

2
− c

)

if c < c0; and

ζ∗ = ζn
j

[

1

2
+ c0

(

2 − c0

c

)

−
(

1 − c0

c

)2
]

+ζn
j+1

[

1

2
− c0

(

2 − c0

c

)

]

+ζn+1
j

(

1 − c0

c

)2

if c > c0; c0 = 1/
(

2 +
√

2
)

; stable;

..

..

..

Flather algorithm summary

• replaces Flather, 1976; Chapman, 1985 algorithms

• original setting ζ∗ =
(

ζn
j + ζn

j+1

)

/2 becomes unstable once c > 1/2. This is about

40% more restrictive than the native stability limit of Generalized FB barotropic
mode, c=0.87

• ζ∗ =
(

ζn+1
j + ζn

j+1

)

/2 removes the restriction, but both of them are more reflective

than the switched explicit-implicit version

• level of wave reflection of the final algorithm is not achievable by an Orlanskii
scheme. A fraction oF percent

• the hole instability, ∼ 0.48 < c <∼ 0.52, was first encountered by Xavier Capet
(shows up as blow-up at the boundary with details highly dependent on setting
of time step, incl. no blow-up, when c < 1/2), and went unexplained for several
months. Now we are able to reproduce it in idealized wave problem

• the switched explicit-implicit algorithm for ζ∗ was ported into AGRIF (along with
the barotropic mode as a whole), but the final version is not

• we can do tides using S-shaped fast-time averaging without instabilities or exces-
sive amplitudes

• out of 30+ publications related to the subject, only Nycander & Döös, 2004
analyze effects of discretisation and time stepping

Thread programming and OpenMP Standard

ROMS OpenMP code was originally written under assumption ”write-back” cache

coherency protocol designed by SGI for its PowerChallenge and Origin 2000 su-
percomputers. The protocol keeps track on multiple copies of data stored in the
same cache line in main memory, which reside in different caches on an SMP
machine. Once a cached copy of the cache line is modified by one of the CPUs,
it is marked as ”exclusive” for that CPU; ”dirty” in main memory, and ”invalid”
in all other caches. Processor is not allowed (by hardware; 2-bits per cache line –
the only data which travels directly from CPU to CPU) to work on ”invalid” or
to read ”dirty” cache line, forcing the owner of ”exclusive” copy to write it back
into the main memory when it is requested by another CPU.

With the departure of Origin 2000 the above protocol is no longer honored.

OpenMP standard specifies that a shared variable is flushed automatically at the
end of parallel region, barrier, lock only if that variable is visible from the pro-
gramming unit where that OpenMP directive is present. ROMS (all codes) did
not follow this rule. The problem is fixable (fixed), but requires attention

OpenMP Version 2.5 Specification is released on May 2005; updates v.2.1 of
November 2001. More explicit about F90 (e.g., explains insidents of false sharing

due to compiler-inserted data copying).

??? Intel, AMD are very vague about their cache-coherency protocols

??? looks like Intel 9.1.x compiler ignores !$OMP FLUSH

Left: an example of loss of synchronization; field is near-surface salinity; there are
64 subdomains and 4 threads; thread #3 (the upper) is out of sync. These kind
off errors are non-deterministic, non-reproducible, and extremely hard to debug.

ROMS Linux cluster computing: Experiences

• Opportunity to harness supercomputing power at manageable cost

• Scaling is not an issue for ROMS-family codes: adding more nodes leads to nearly
proportional increase of computing speed, even if using GigE interconnect for a
do-it yourself cluster size (≤ 24 nodes)

• ROMS code in OpenMP mode optimally tiled for cache utilization outperforms
2:1 ROMS code in MPI mode within a single SMP node. Same observation applies
for single processor, tiled vs. single block. However, OpenMP is applicable for one
node only

• A common major disappointment with GigE clusters is that CPU usage (as seen
by top) is well below 100%: typically ∼50% or less.

• The two items above (∼50% CPU utilization × 1/2 due poor cache utiliza-
tion) bring us to ∼25% efficiency relatively to the dream code which combines
OpenMP-level single-processor performance with MPI scaling on multiple nodes

Linux cluster computing continued..

• most today’s Linux clusters are made of 2- 4-way SMP nodes
• dual CPU; dual- or quad-core CPU
• shared memory buses
• sometimes shared caches
• multiple/shared NIC/interconnect cards
• GigE is full duplex, however full-duplex transmission can be used for point-

to-point connections only (e.g., node1 ↔ node2 is full duplex, but if node1 →
node2 and node2 → node3, then node2 in not in full-duplex mode; intelligent
switches can alleviate this)

• most MPI codes are designed to
• separate communications from computations in time resulting in

peak loads on interconnects followed periods of by inactivity
• treat multiple processors (cores) within each physical node as separate

compute nodes, ignoring non-uniform topology of the machine, (if any).
• introduce competition for shared interconnect cards
• single subdomain — single processor policy
• ignore cache effects

In ROMS community we started as multi-threaded (Cray, SGI, then OpenMP) code
designed for SMP. Then, after the departure SGI Origin we de-facto downplayed
importance of SMP computing as limited to single node: MPI rules.

• Now SMPs are coming back in form of multicore CPUs. 2.4GHz Q6600 Intel Core
2 Quad is only $270 at mwave.com ⇒ era of single-processor computing is over

Cache effects on SMP computer...

two-dimensional Soliton problem on 768 × 256 grid

Basic stuff: matched sends and receives

node1
MPI Send (..,node2,..)

MPI Recv (..,node2,..)

node2
MPI Recv (..,node1,..)

MPI Send (..,node1,..)

• most recommended in textbooks
• safe against deadlock regardless of size of system buffer
• synchronous communications allows replacement MPI Send → MPI Ssend

• low latency
• if hardware allows full-duplex communication, this capability is not utilized

node1
MPI SendRecv[Replace] (..,node2,..)

node2
MPI SendRecv[Replace] (..,node1,..)

• recommended by IBM ”Red Books”
• guarantees no deadlock
• leaves everything up to vendor of particular MPI implementation, and hopes that they do it the

most optimal way

node1
MPI Irecv (..,node2,req,..)

MPI Send (..,node2,..)

MPI Wait (req,status)

node2
MPI Irecv (..,node1,req,..)

MPI Send (..,node1,..)

MPI Wait (req,status)

• most halo exchanges are done this way

• utilized full-duplex communication ...as long as nobody else interferes

Halo-exchange algorithms

Generally considered a widely studied problem, Alan Wallcraft, but not trivial, even

after many years

• Communication with more than one neighbor: scheduling of multiple messages

• Revisiting with emphasis for SMP hardware nodes: dealing with interferences of
MPI-nodes running on the same board and sharing network interface

• Hardware caveats: can we make use of second NIC-card interface on the board?

stage 1: north-south
do iter=0,1

if (mod(jnode+iter,2) == 0) then

MPI SendRecv (..,south,...)

else

MPI SendRecv (..,north,..)

endif

enddo
stage 2: east-west, inc. corners

do iter=0,1

if (mod(inode+iter,2) == 0) then

MPI SendRecv (..,west,..)

else

MPI SendRecv (..,east,..)
endif

enddo

• two-stage algorithm: sending east-west
messages must wait until north-south are
received because corner points should be in-
cluded into outgoing messages. two-stage
⇒ added latency

• no need to worry about Send—Recv message
matching, however order of which, north- or
southbound, message should be send first is
alternated for adjacent nodes: this is what
if (mod(jnode+iter,2) == 0) then is for

• for performance relies exclusively on MPI-
vendor implementation

• guarantees no deadlock (MPI standard)
• full-duplex transmission is possible if imple-

mented by vendor inside MPI SendRecv

• presence of a second MPI-node within the
same physical SMP node which tries to
send messages to a different destination
through the same NIC destroys point-to-
point arrangement, ultimately loosing full-
duplex transmission

alternating Send-Recv — Recv-Send

order, separately in each direction

stage 1: north-south
do iter=0,1

if (mod(jnode+iter,2) == 0) then

MPI Ssend (..,south,..)
MPI Recv (..,south,..)

else

MPI Recv (..,north,..)

MPI Ssend (..,north,..)

endif

enddo
stage 2: east-west, inc. corners

do iter=0,1

if (mod(inode+iter,2) == 0) then

MPI Ssend (..,west,..)

MPI Recv (..,west,..)

else

MPI Recv (..,east,..)
MPI Ssend (..,east,..)

endif

enddo

half-duplex

chequerboard algorithm

stage 1: north-south
do iter=0,1

if (mod(inode+jnode+iter,2) == 0) then

MPI Ssend (..,south,..)

MPI Recv (..,south,..)

else
MPI Recv (..,north,..)

MPI Ssend (..,north,..)

endif

enddo

stage 2: east-west, inc. corners
do iter=0,1

if (mod(inode+jnode+iter,2) == 0) then

MPI Ssend (.,west,..)

MPI Recv (..,west,..)

else

MPI Recv (..,east,..)

MPI Ssend (..,east,..)
endif

enddo

fully matched send-receives:
”white” nodes do Send first, then Recv;
”black”s do the opposite;

if two adjacent MPI-subdomains are running on the same SMP node and share network interface,
then when one MPI-node sends message to the south, approximately at the same time the other one
receives from the north, and vice versa. Neither of these algorithms takes advantage of full-duplex
transmission.

4-color chequerboard algorithm

stage 1: north-south
do iter=0,1

if (mod(jnode+iter,2) == 0) then

if (mod(inode+iter,2) == 0) then

MPI Ssend (..,south,..)
MPI Recv (..,south,..)

else

MPI Recv (..,south,..)

MPI Ssend (..,south,..)

endif

else
if (mod(inode+iter,2) == 0) then

MPI Recv (..,north,..)

MPI Ssend (..,north,..)

else

MPI Ssend (..,north,..)

MPI Recv (..,north,..)
endif

endif

enddo

stage 2: east-west, inc. corners
do iter=0,1

if (mod(inode+iter,2) == 0) then

if (mod(jnode+iter,2) == 0) then

MPI Ssend (..,west,..)

MPI Recv (..,west,..)

else
MPI Recv (..,west,..)

MPI Ssend (..,west,..)

endif

else

if (mod(jnode+iter,2) == 0) then

MPI Recv (..,east,..)
MPI Ssend (..,east,..)

else

MPI Ssend (..,east,..)

MPI Recv (..,east,..)

endif

endif
enddo

if two MPI-subdomains running on the same physical SMP node are adjacent to each other in either
east-west or north-south directions, then messages transmitted in the transversal direction by the two
MPI processes communicate with the same physical destination, but travel in opposite directions:
each of the two MPI-processes makes half-duplex transmissions, physical node is in full-duplex mode.

• the fastest algorithm on NCSA ”tungsten” cluster (dual-Xeon nodes, Myranet interconnect);
we were able to use up to 384 CPUs (192 nodes) and it scales

• the innermost ”if”-blocks can be replaced with MPI SendRecv’s (this is mpi exchange4SR.F), or with
IRecv – Send – Wait sequences. Either alternative is slower on dual-CPU nodes (?). Counterintuitive.

Single-stage, 8-message, direct exchange

MPI Irecv (..,west,..)

MPI Irecv (..,south,..)

MPI Irecv (..,east,..)
MPI Irecv (..,north,..)

...

MPI Irecv (..,north-west,..)

create list of messages to be received

MPI Send (..,west,..)

MPI Send (..,south,..)

MPI Send (..,east,..)

MPI Send (..,north,..)

...

MPI Send (..,north-west,..)

do while (until the list is empty)

MPI Waitany (...list, index, ...)

unpack incoming message

and delete it from the list

enddo

• asynchronous, single-stage: all messages
can be send at-once without waiting for any
to be received. This is mpi exchange8WA.F

• designed to hide latencies of different mes-
sages behind each other

• corners must be sent separately as small
messages; this is price paid for being single-
stage

• explored a variant where Send section uses al-
ternating chequer-board sequence to match
order of sending between adjacent nodes:
this has a very little effect

• use of MPI Waitany rather than individual
MPI Wait’s results in lower CPU usage in
GigE cluster, but the code runs overall faster
with Waitany (less busy waiting)

• no though about interference of multiple
MPI-nodes running on the same physical
node: just hope that hardware can handle
multiple competing sends

• overall this is the fastest algorithm on our
own GigE cluster with dual-Opteron nodes
(all CPUs are single core) and short cables
connecting eth1’s of consecutive nodes (this
is discussed below)

• helplessly slow on NCSA Myranet cluster

Tweaking hardware: Making use of the second NIC card

virtually all server boards come with it

computer consultants tell don’t bother: it won’t improve latencies or anything else,
however

• ROMS has very simple, static partitioning topology, which can be easily mapped
onto the machine, and

• Physical nodes are SMP nodes, and the code tends to send multiple messages at
the same time, and

• MPI works by hostnames and knows nothing about IP addresses: you can trick
it to believe that hosts are the same, while delivering message using different lines

Connect the otherwise unused eth1’s of pairs consecutive nodes by short cables and
take advantage of dedicated lines between some of the pairs of nodes.

Connect both NIC interfaces of the head-node to the main switch and assign alter-

nating IPs for NFS-mounting of disks. This effectively doubles the I/O bandwidth

if multiple compute nodes attempt to write at the same time.

node3

ifcfg-eth0
DEVICE=eth0
IPADDR=10.1.1.3

NETMASK=255.255.255.0

ifcfg-eth1
DEVICE=eth1
IPADDR=192.168.1.3

NETMASK=255.255.255.0

/etc/hosts
...
10.1.1.2 node2
10.1.1.3 node3
192.168.1.4 node4
10.1.1.5 node5
10.1.1.6 node6
10.1.1.7 node7
...

node4

ifcfg-eth0
DEVICE=eth0
IPADDR=10.1.1.4

NETMASK=255.255.255.0

ifcfg-eth1
DEVICE=eth1
IPADDR=192.168.1.4

NETMASK=255.255.255.0

/etc/hosts
...
10.1.1.2 node2
192.168.1.3 node3
10.1.1.4 node4
10.1.1.5 node5
10.1.1.6 node6
10.1.1.7 node7
...

eth0 of each node is connected to main switch

eth1’s of node3 and node4 are connected to each other (technically this is a separate network)

now node4 replies to ping from node3 as 192.168.1.4 rather than its regular IP. Similar applies
to node3 as seen from node4. Any MPI communication between them goes through short cable
by-passing main switch and without competing with other messages.

use machines.LINUX to control node placement and maximize the use of dedicated lines

MPI-only code on Linux cluster with dual-CPU nodes

machines
.LINUX
node1

node2

node3
node4

node1

node2

node3

node4

node8
node7

node6

node8

node8

node7

node6
node8

node9

node10

node11

node12

node9
node10

node11

node12

Nd1 ... Nd12 are physical compute nodes; r0, r1, ..., r23 are MPI-ranks;
eth0’s of each physical node are connected to switch; eth1’s of consecutive pairs
of nodes are connected directly to each other (thick black lines); placement of

MPI-nodes is controlled via machines.LINUX on the right

Another example of topology for MPI code on cluster with dual-CPU-nodes

machines
.LINUX
node1

node3

node5

node1
node3

node5

node2

node4

node6

node2
node4

node6

node7

node9

node11

node7
node9

node11

node8

node10

node12

node8
node10

node12

Nd1 ... Nd12 are physical compute nodes; r0, r1, ..., r23 are MPI-ranks;
vertical black lines are short cables; 4 of the 7 north-south messages are within

the boards; 2 via short cables, and only 1 goes through the switch

Summary of MPI-only code on cluster with dual-CPU nodes

• utilize the second NIC card on each board
• topology matters; always map your problem onto the machine

• for the Gigabit interconnect the best exchange algorithm is MPI Irecv (all 8 mes-
sages, incl. corners at once) → MPI Send (all) → MPI Wait any and unpack in order
of appearance;

• the above exchange algorithm should not to be used on Myranet cluster; instead
synchronous paired, 2-stage (east-west, then north-south; no-corners) strategy is
the best there;

• contrary textbook recommendations, paired MPI Ssend – MPI Recv; MPI Recv –
MPI Ssend works better than MPI SendRecv, even on IBM (p690 at NCSA tested)

• MPI Srecv exists only in PowerPoint presentations and lectures of computer science
professors: google finds it, but nm libmpi.a does not

• the combined effect of topology mapping, optimized halo-exchange algorithm,
and using second NIC cards yields nearly double performance (a factor of 1.8
observed) on dual-CPU node Gigabit cluster relatively to ”flat MPI” approach
(treating all CPUs as separate nodes); ∼ 50% → 90% of CPU utilization observed,
effectively eliminating temptation to use a more expensive Infiniband Network

• MPI-only codes tend to separate computation and communication in time resulting
in peak-loads on network, while keeping it inactive during computing

• multiple CPUs running on the same SMP node compete to get usage of shared
NIC cards

• scaling is near-perfect, but per-CPU performance lags behind of that of OpenMP
code due to poor cache management

MPI with Threads

Now, at last, multiple threads are officially included into MPI-2 Standard

Replaces MPI Init with MPI Init thread (requested, provided), where

requested, provided =























































0 = MPI THREAD SINGLE means no thread support
1 = MPI THREAD FUNNELED means threads are allowed,

but only master thread can execute MPI calls

2 = MPI THREAD SERIALIZED multiple threads can do
MPI calls, but the calls are serialized

3 = MPI THREAD MULTIPLE means multiple threads can
execute concurent MPI calls

• The original motivation is to allow multiple subdomains for cache management to
recover cache efficiency of optimally tiled code.

• But it turns out that there is more in it: tiling and threads can be used for tuning
of scheduling of messages to alleviate competition for access to Network Interface
within SMP nodes, simply put, when one thread sends messages, the other(s)
compute and, and vice versa.

• Long overdue: we were talking about it for years, but it is hard to do: very careful
scheduling required

Approach:

• relies on highest level of MPI thread support, requested, provided = 3,3

• 2-level 2-dimensional subdomain decomposition: tiles within MPI subdomains;

• Once a thread completes working on a tile, it sends/receives relevant messages to
its MPI-neighbor (if any). Because now there is (may be) more than one neighbor
of each side, and because MPI knows nothing about threads (i.e., thread receiving
an MPI message from MPI neighbor does not know from which thread on that
node the message is coming) use unique tags to label messages sent by different
threads;

• Mirror thread trajectories for adjacent MPI subdomains: that is the key to avoid
deadlocks.

And, finally, the code is just a tool; art is in its usage: the number of possible

permutations is now too large to be quickly explored.

12 MPI nodes, 2 threads, 8 tiles within each node

1/5

12 MPI nodes, 8 tiles, 2 threads, continued...

2/5

12 MPI nodes, 8 tiles, 2 threads, continued...

3/5

12 MPI nodes, 8 tiles, 2 threads, continued...

4/5

12 MPI nodes, 8 tiles, 2 threads, continued...

5/5

Scheduling messages by threads: A more compicated case

0/10

1/10

2/10

3/10

4/10

5/10

6/10

7/10

8/10

9/10

10/10

Conclusion

• Besides cache blocking, inner tiling can be used to control scheduling of com-
munications on order to alleviate competition between/among CPUs for network
access

• works in ”soft mode”: threads are free-running, and there are no barriers around
MPI calls, and no extra barriers relatively to the original OpenMP-only code.

• thread trajectory does matter by itself, and relatively to other threads, and it
is no longer a simple zig-zag pattern

• Overlaps computations and communications in time

• Soften peak loads on network switch

• Finer tiling also means smaller MPI-messages, which negatively affects perfor-
mance. Compromise is needed, and preliminary experience tells that message
scheduling is more critical than cache optimization

Does it work?

• Yes, in sense that the code is functional and produces correct result

• Yes, we can exceed performance of pure MPI code on dual-CPU nodes connected
via GigE network for problems of our interest

.

• Too early to say about quad-Core nodes: in comparison with our dual-Opteron
cluster nodes, the quad-Core provides 3 times more CPU power, but only 5/6 of
aggregate memory bandwidth, and only a single NIC card, ultimately making it a
harder problem.

Optimally tiled OpenMP code scales as ×1.9 then ×1.4...1.5 for a large out-of cache
problem when going 1 → 2 then 2 → 4 cores, well off-setting an extra cost of quad-
relatively to dual-core.

• Performance of dream code is still out of reach: GigE may be simply too slow, or
we have to go for a more ambitious problem

• Looking back: never trust you intuition about ideas for improving performance of
MPI code: always try them

• Swappable MPI halo-exchange routines

